Skip to main content
Log in

Implication of source models on tsunami wave simulations for 2004 (Mw 9.2) Sumatra earthquake

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

This article addresses the effect of the rupture process on tsunami wave simulations by assessing the propagation of uncertainties from source to wave heights. Thirteen slip models available for the 2004 (Mw 9.2) Sumatra earthquake are utilized in the evaluation. First, quasi-static displacement of the ocean floor is estimated using Okada’s solutions. Further, the corresponding displacement time histories provided as an initial condition for tsunami simulations by modeling the region in Clawpack. The simulated results are compared against the four tidal-gauge data available in the east-coast of India and three altimeter recordings from satellites. The comparisons pointed to the sensitivity of simulated wave heights toward the input slip distribution and rupture process. Further, it is noted from the standard deviations estimated between the results of thirteen models that the value reduced from maximum slip (6.53 m) to displacement (2.60 m), which further reduces in the wave height estimates (1.70 m). Hence, this study suggests the need for proper quantification of the uncertainty propagation in tsunami hazard estimations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ammon CJ, Ji C, Thio H-K, Robinson D, Ni S, Hjorleifsdottir V, Kanamori H, Lay T, Das S, Helmberger D et al (2005) Rupture process of the 2004 sumatra-andaman earthquake. Science 308(5725):1133–1139

    Article  Google Scholar 

  • Banerjee P, Pollitz F, Nagarajan B, Burgmann R (2007) Coseismic slip distributions of the 26 december 2004 sumatra-andaman and 28 March 2005 nias earthquakes from gps static offsets. Bull Seismol Soc Am 97(1A):S86–S102

    Article  Google Scholar 

  • Belward A, Stibig H-J, Eva H, Rembold F, Bucha T, Hartley A, Beuchle R, Khudhairy D, Michielon M, Mollicone D (2007) Mapping severe damage to land cover following the 2004 indian ocean tsunami using moderate spatial resolution satellite imagery. Int J Remote Sens 28(13–14):2977–2994

    Article  Google Scholar 

  • Carey GR (2018) Back-analysis study of selected norwegian debris flow and debris avalanche events. Master’s thesis

  • Chlieh M, Avouac J-P, Hjorleifsdottir V, Song T-RA, Ji C, Sieh K, Sladen A, Hebert H, Prawirodirdjo L, Bock Y et al (2007) Coseismic slip and afterslip of the great m w 9.15 sumatra-andaman earthquake of 2004. Bull Seismol Soc Am 97(1A):S152–S173

    Article  Google Scholar 

  • Dhanya J, Raghukanth STG (2018) Ground motion simulation for earthquakes in sumatran region. Curr Sci 114(8):00113891

    Article  Google Scholar 

  • Dutykh D, Mitsotakis D, Gardeil X, Dias F (2013) On the use of the finite fault solution for tsunami generation problems. Theor Comput Fluid Dyn 27(1–2):177–199

    Article  Google Scholar 

  • Fujii Y, Satake K (2007) Tsunami source of the 2004 sumatra-andaman earthquake inferred from tide gauge and satellite data. Bull Seismol Soc Am 97(1A):S192–S207

    Article  Google Scholar 

  • George D (2011) Adaptive finite volume methods with well-balanced riemann solvers for modeling floods in rugged terrain: application to the malpasset dam-break flood (france, 1959). Int J Numer Methods Fluids 66(8):1000–1018

    Article  Google Scholar 

  • George DL (2006) Finite volume methods and adaptive refinement for tsunami propagation and inundation. PhD dissertation, University of Washington

  • Gower J (2007) The 26 december 2004 tsunami measured by satellite altimetry. Int J Remote Sens 28(13–14):2897–2913

    Article  Google Scholar 

  • Guilbert J, Vergoz J, Schisselé E, Roueff A, Cansi Y (2005) Use of hydroacoustic and seismic arrays to observe rupture propagation and source extent of the mw= 9.0 sumatra earthquake. Geophys Res Lett 32(15)

  • Hirata K, Satake K, Tanioka Y, Kuragano T, Hasegawa Y, Hayashi Y, Hamada N (2006) The 2004 indian ocean tsunami: Tsunami source model from satellite altimetry. Earth Planets Space 58(2):195–201

    Article  Google Scholar 

  • Hoechner A, Babeyko AY, Sobolev SV (2008) Enhanced gps inversion technique applied to the 2004 sumatra earthquake and tsunami. Geophys Res Lett 35(8)

  • Imamura F (1996) Review of tsunami simulation with a finite difference method. Long-wave Runup Models 25–42

  • Ioualalen M, Asavanant J, Kaewbanjak N, Grilli S, Kirby J, Watts P (2007) Modeling the 26 december 2004 indian ocean tsunami: case study of impact in thailand. J Geophys Res Oceans 112(C7)

  • Isvoranu D, Badescu V (2012) Hydrodynamics of tsunamis generated by asteroid impact in the black sea. Central Eur J Phys 10(2):429–446

    Google Scholar 

  • Jade S, Vijayan M, Gupta S, Kumar P, Gaur V, Arumugam S (2007) Effect of the m 9.3 sumatra-andaman islands earthquake of 26 december (2004) at several permanent and campaign gps stations in the indian continent. International Journal of Remote Sensing 28(13–14):3045–3054

  • Ji C (2005) Preliminary rupture model for the december 26, 2004 earthquake, off the west coast of northern sumatra, magnitude 9.1

  • Koshimura S, Moya L, Mas E, Bai Y (2020) Tsunami damage detection with remote sensing: a review. Geosciences 10(5):177

    Article  Google Scholar 

  • Kumar A, Chingkhei R, Dolendro T (2007) Tsunami damage assessment: a case study in car nicobar island, india. Int J Rem Sens 28(13–14):2937–2959

    Article  Google Scholar 

  • LeVeque RJ, George DL, Berger MJ (2011) Tsunami modelling with adaptively refined finite volume methods. Acta Numer 20:211–289

    Article  Google Scholar 

  • Lorito S, Piatanesi A, Cannelli V, Romano F, Melini D (2010) Kinematics and source zone properties of the 2004 sumatra-andaman earthquake and tsunami: nonlinear joint inversion of tide gauge, satellite altimetry, and gps data. J Geophys Res Solid Earth 115(B2)

  • Løvholt F, Glimsdal S, Harbitz CB (2020) On the landslide tsunami uncertainty and hazard

  • Murty T, Nirupama N, Nistor I, Hamdi S (2005) Far field characteristics of the tsunami of 26 december 2004. ISET J Earthquake Technol Tech Note 42(4):213–217

    Google Scholar 

  • Nagarajan B, Suresh I, Sundar D, Sharma R, Lal A, Neetu S, Shenoi S, Shetye S, Shankar D (2006) The great tsunami of 26 december 2004: a description based on tide-gauge data from the indian subcontinent and surrounding areas. Earth Planets Space 58(2):211–215

    Article  Google Scholar 

  • Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75(4):1135–1154

    Google Scholar 

  • Ortiz M, Bilham R (2003) Source area and rupture parameters of the 31 december 1881 mw= 7.9 car nicobar earthquake estimated from tsunamis recorded in the bay of bengal. J Geophys Res Solid Earth 108(B4)

  • Pailoplee S, Choowong M (2014) Earthquake frequency-magnitude distribution and fractal dimension in mainland southeast asia. Earth Planets Space 66(1):8

    Article  Google Scholar 

  • Pelinovsky E, Didenkulova I, Didenkulov O, Rodin A (2016) Analytical solutions and numerical modeling for a dam-break problem in inclined channels. EGUGA, pages EPSC2016–7153

  • Pesaresi M, Gerhardinger A, Haag F (2007) Rapid damage assessment of built-up structures using vhr satellite data in tsunami-affected areas. Int J Remote Sens 28(13–14):3013–3036

    Article  Google Scholar 

  • Piatanesi A, Lorito S (2007) Rupture process of the 2004 sumatra-andaman earthquake from tsunami waveform inversion. Bull Seismol Soc Am 97(1A):S223–S231

    Article  Google Scholar 

  • Rabinovich AB, Thomson RE (2007) The 26 december 2004 sumatra tsunami: analysis of tide gauge data from the world ocean part 1. Indian ocean and South Africa. In: Tsunami and its hazards in the indian and Pacific oceans, pp 261–308. Springer

  • Rhie J, Dreger D, Burgmann R, Romanowicz B (2007) Slip of the 2004 sumatra-andaman earthquake from joint inversion of long-period global seismic waveforms and gps static offsets. Bull Seismol Soc Am 97(1A):S115–S127

    Article  Google Scholar 

  • Roshan A, Basu PC, Jangid R (2016) Tsunami hazard assessment of indian coast. Nat Hazards 82(2):733–762

    Article  Google Scholar 

  • Singh A, Murty T, Rastogi B, Yadav R (2012) Earthquake generated tsunami in the indian ocean and probable vulnerability assessment for the east coast of india. Mar Geod 35(1):49–65

    Article  Google Scholar 

  • Singh R, Cervone G, Kafatos M, Prasad A, Sahoo A, Sun D, Tang D, Yang R (2007) Multi-sensor studies of the sumatra earthquake and tsunami of 26 december 2004. Int J Remote Sens 28(13–14):2885–2896

    Article  Google Scholar 

  • Somerville P, Irikura K, Graves R, Sawada S, Wald D, Abrahamson N, Iwasaki Y, Kagawa T, Smith N, Kowada A (1999) Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seismol Res Lett 70(1):59–80

    Article  Google Scholar 

  • Sørensen M, Atakan K, Pulido N (2007) Simulated strong ground motions for the great m 9.3 sumatra-andaman earthquake of 26 december 2004. Bull Seismol Soc Am 97(1A):S139–S151

    Article  Google Scholar 

  • Tanioka Y, Kususose T, Kathiroli S, Nishimura Y, Iwasaki S-I, Satake K et al (2006) Rupture process of the 2004 great sumatra-andaman earthquake estimated from tsunami waveforms. Earth Planets Space 58(2):203–209

    Article  Google Scholar 

  • Titov V, Rabinovich AB, Mofjeld HO, Thomson RE, González FI (2005) The global reach of the 26 december 2004 sumatra tsunami. Science 309(5743):2045–2048

    Article  Google Scholar 

  • Titov VV, Gonzalez FI (1997) Implementation and testing of the method of splitting tsunami (most) model. Technical report, NOAA Technical Memorandum ERL PMEL-112, 11 pp UNIDATA

  • Turmel D, Locat J, Leblanc J, Cauchon-Voyer G (2018) Tsunami modelling of the 7250 cal years bp betsiamites submarine landslide. Geological Society, London, Special Publications, 477:SP477–9

  • Weiss R, Berger M, LeVeque, R (2017) Tsunami wave generation, propagation and inundation from by asteroid-generated air bursts. EGUGA, page 11206

  • Yan Z, Sui Y, Sheng J, Tang D, Lin I (2015) Changes in local oceanographic and atmospheric conditions shortly after the 2004 indian ocean tsunami. Ocean Dyn 65(6):905–918

    Article  Google Scholar 

  • Yang M, Su T, Hsu C, Chang K, Wu A (2007) Mapping of the 26 december 2004 tsunami disaster by using formosat-2 images. Int J Remote Sens 28(13–14):3071–3091

    Article  Google Scholar 

  • Yoshimoto M, Yamanaka Y (2014) Teleseismic inversion of the 2004 sumatra-andaman earthquake rupture process using complete green’s functions. Earth Planets Space 66(1):152

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Dhanya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanya, J., Raghukanth, S.T.G. Implication of source models on tsunami wave simulations for 2004 (Mw 9.2) Sumatra earthquake. Nat Hazards 104, 279–304 (2020). https://doi.org/10.1007/s11069-020-04168-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-020-04168-5

Keywords

Navigation