Skip to main content
Log in

Spatio-Temporal Spreading of Correlations in the Bose–Hubbard Model

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have developed a formalism that allows the study of correlations in space and time in the Bose–Hubbard model, both in equilibrium and out of equilibrium. We obtain a two-particle irreducible effective action in the contour-time formalism that allows us to obtain equations of motion for the superfluid order parameter and two-point correlation functions. We use these equations to calculate equilibrium phase diagrams that are significant improvements on mean field theory and apply them to study the spreading of correlations after a quench in the Mott insulator phase. We study the single-particle density matrix and find velocities for the spreading of correlations in one, two and three dimensions. We discuss the prospects of generalizing this approach to study the disordered Bose–Hubbard model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998)

    Article  ADS  Google Scholar 

  2. M. Greiner, O. Mandel, T. Esslinger, T.W. Hansch, I. Bloch, Nature 415, 39 (2002)

    Article  ADS  Google Scholar 

  3. W.S. Bakr, A. Peng, M.E. Tai, R. Ma, J. Simon, J.I. Gillen, S. Fölling, L. Pollet, M. Greiner, Science 329, 547 (2010)

    Article  ADS  Google Scholar 

  4. M.P. Kennett, I.S.R.N. Condens, Matter Phys. 2013, 393616 (2013)

    Google Scholar 

  5. M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schauß, T. Fukuhara, C. Gross, I. Bloch, C. Kollath, S. Kuhr, Nature 481, 484 (2012)

    Article  ADS  Google Scholar 

  6. P. Barmettler, D. Poletti, M. Cheneau, C. Kollath, Phys. Rev. A 85, 053625 (2012)

    Article  ADS  Google Scholar 

  7. S.R. Clark, D. Jacksch, Phys. Rev. A 70, 043612 (2004)

    Article  ADS  Google Scholar 

  8. C. Kollath, A. Läuchli, E. Altman, Phys. Rev. Lett. 98, 180601 (2007)

    Article  ADS  Google Scholar 

  9. J. Zakrzewski, Phys. Rev. A 71, 043601 (2005)

    Article  ADS  Google Scholar 

  10. S.S. Natu, K.R.A. Hazzard, E.J. Mueller, Phys. Rev. Lett. 87(106), 125301 (2011)

    Article  ADS  Google Scholar 

  11. P. Navez, R. Schützhold, Phys. Rev. A 82, 063603 (2010)

    Article  ADS  Google Scholar 

  12. K.V. Krutitsky, P. Navez, F. Quiesser, R. Schützhold, Eur. Phys. J. Quant. Tech. 1, 12 (2014)

    Google Scholar 

  13. Y. Yanay, E.J. Mueller, Phys. Rev. A 93, 013622 (2016)

    Article  ADS  Google Scholar 

  14. M.R.C. Fitzpatrick, M.P. Kennett, Nucl. Phys. B 930, 1 (2018)

    Article  ADS  Google Scholar 

  15. M.R.C. Fitzpatrick, M.P. Kennett, Phys. Rev. A 98, 053618 (2018)

    Article  ADS  Google Scholar 

  16. O.V. Konstantinov, V.I. Perel, Zh Eksp, Teor. Fiz. 39, 197 (1960) [Sov. Phys. JETP12, 142 (1961)]

    Google Scholar 

  17. H.U.R. Strand, M. Eckstein, P. Werner, Phys. Rev. X 5, 011038 (2015)

    Google Scholar 

  18. K. Sengupta, N. Dupuis, Phys. Rev. A 71, 033629 (2005)

    Article  ADS  Google Scholar 

  19. M.P. Kennett, D. Dalidovich, Phys. Rev. A 84, 033620 (2011)

    Article  ADS  Google Scholar 

  20. J.M. Cornwall, R. Jackiw, E. Tomboulis, Phys. Rev. Lett. 10, 2428 (1974)

    ADS  Google Scholar 

  21. T.D. Kühner, H. Monien, Phys. Rev. B 58, R14741 (1998)

    Article  ADS  Google Scholar 

  22. B. Capogrosso-Sansone, Ş.G. Söyler, N.V. Prokof’ev, B. Svistunov, Phys. Rev. A 77, 015602 (2008)

    Article  ADS  Google Scholar 

  23. J.-Y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D.A. Husem, I. Bloch, C. Gross, Science 352, 1547 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  24. M. Yan, H.-Y. Hui, M. Rigol, V.W. Scarola, Phys. Rev. Lett. 119, 073002 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank NSERC for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm P. Kennett.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennett, M.P., Fitzpatrick, M.R.C. Spatio-Temporal Spreading of Correlations in the Bose–Hubbard Model. J Low Temp Phys 201, 82–89 (2020). https://doi.org/10.1007/s10909-020-02495-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02495-2

Keywords

Navigation