Skip to main content
Log in

A Review of Technologies for Welding Magnesium Alloys to Steels

  • Review Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

We survey various state-of-the-art methods for welding magnesium alloys and steels using different joint configurations. Microstructural characterizations indicate that four microstructures may form at the Mg/steel interface after welding: unwelded gap, metal oxides, solid solutions, or intermetallic compounds. Reaction products at the Mg/steel interface vary with different welding methods, alloying elements in base materials, interlayers or coatings applied, and preparations of base material before welding. Mechanical property characterizations, (a) lap tensile shear testing for lap-welded and spot-welded joints, (b) tensile testing for butt-welded joints and (c) fatigue properties of lap-welded and spot-welded joints are summarized and compared, separately. Reaction products at the Mg/steel interface are correlated with mechanical properties. Finally, ways to enhance Mg/steel joint strength, such as introducing interlocking features during friction stir lap and butt welding, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Source references are shown in brackets

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. American Energy Independence. (2017). “American Fuels.” San Diego, California. https://www.americanenergyindependence.com/fuels.aspx.

  2. U.S. Energy Information Administration. (2019). Frequently Asked Questions. “How much carbon dioxide is produced from U.S. gasoline and diesel fuel consumption?” https://www.eia.gov/tools/faqs/faq.php?id=307&t=10.

  3. Omar, M. A. (2011). The automotive body manufacturing systems and processes. Amsterdam: Wiley.

    Book  Google Scholar 

  4. Ishikawa, T., Amaoka, K., Masubuchi, Y., Yamamoto, T., Yamanaka, A., Arai, M., et al. (2018). Overview of automotive structural composites technology developments in Japan. Composites Science and Technology, 155, 221–246. https://doi.org/10.1016/j.compscitech.2017.09.015.

    Article  Google Scholar 

  5. The World Steel Association. (2008). Cars and Metal, Metal and Cars. https://www.etf.com/sections/features-and-news/1289-cars-and-metal-metal-and-cars?nopaging=1.

  6. The World Steel Association. (2019). Steel in automotive. https://www.worldsteel.org/steel-by-topic/steel-markets/automotive.html.

  7. Office of Energy Efficiency & Renewable Energy (2014). Lightweight materials for cars and trucks. https://www.energy.gov/eere/vehicles/lightweight-materials-cars-and-trucks.

  8. Whalen, S., Overman, N., Joshi, V., Varga, T., Graff, D., & Lavender, C. (2019). Magnesium alloy ZK60 tubing made by Shear Assisted Processing and Extrusion (ShAPE). Materials Science and Engineering: A, 755, 278–288. https://doi.org/10.1016/j.msea.2019.04.013.

    Article  Google Scholar 

  9. Joost, W. J. (2012). Reducing vehicle weight and improving U.S. energy efficiency using integrated computational materials engineering. JOM Journal of the Minerals Metals and Materials Society, 64(9), 1032–1038. https://doi.org/10.1007/s11837-012-0424-z.

    Article  Google Scholar 

  10. S. Kleinbaum, C. Jiang, & S. Logan. (2019). Enabling sustainable transportation through joining of dissimilar lightweight materials. MRS Bulletin, 44(8), 608–612. https://www.cambridge.org/core/journals/mrs-bulletin/article/enabling-sustainable-transportation-through-joining-of-dissimilar-lightweight-materials/7F2D5FCA8385DA0A00061E937E77C5DE

  11. Nayeb-Hashemi, A. A., Clark, J. B., & Swartzendruber, L. J. (2016). Binary Alloy Phase Diagrams (p. 1722). ASM International: Materials Park, OH.

    Google Scholar 

  12. Qi, X., & Song, G. (2010). Interfacial structure of the joints between magnesium alloy and mild steel with nickel as interlayer by hybrid laser-TIG welding. Material Design, 31(1), 605–609. https://doi.org/10.1016/j.matdes.2009.06.043.

    Article  Google Scholar 

  13. Liu, L., & Qi, X. (2010). Strengthening effect of nickel and copper interlayers on hybrid laser-TIG welded joints between magnesium alloy and mild steel. Material Design, 31(8), 3960–3963. https://doi.org/10.1016/j.matdes.2010.03.039.

    Article  Google Scholar 

  14. Liu, L., Qi, X., & Wu, Z. (2010). Microstructural characteristics of lap joint between magnesium alloy and mild steel with and without the addition of Sn element. Materials Letters, 64(1), 89–92. https://doi.org/10.1016/j.matlet.2009.10.023.

    Article  Google Scholar 

  15. Wahba, M., & Katayama, S. (2012). Laser welding of AZ31B magnesium alloy to Zn-coated steel. Materials Design, 35, 701–706. https://doi.org/10.1016/j.matdes.2011.10.031.

    Article  Google Scholar 

  16. Li, L., Tan, C., Chen, Y., Guo, W., & Mei, C. (2013). CO2 laser welding–brazing characteristics of dissimilar metals AZ31B Mg alloy to Zn coated dual phase steel with Mg based filler. Journal of Materials Processing Technology, 213(3), 361–375. https://doi.org/10.1016/j.jmatprotec.2012.10.009.

    Article  Google Scholar 

  17. Martinsen, K., Hu, S. J., & Carlson, B. E. (2015). Joining of dissimilar materials. CIRP Annals, 64(2), 679–699. https://doi.org/10.1016/j.cirp.2015.05.006.

    Article  Google Scholar 

  18. S.T. Amancio-Filho, M. Beyer, J.F. dos Santos, (2005). Method of connecting a metallic bolt to a plastic workpiece. German Patent DE102005056606.5. https://patents.google.com/patent/US7575149.

  19. Varis, J. (2006). Ensuring the integrity in clinching process. Journal of Materials Processing Technology, 174(1–3), 277–285. https://doi.org/10.1016/j.jmatprotec.2006.02.001.

    Article  Google Scholar 

  20. Gao, D., Ersoy, U., Stevenson, R., & Wang, P. C. (2009). A new one-sided joining process for aluminum alloys: friction stir blind riveting. Journal of Manufacturing Science and Engineering, 131(6), 061002. https://doi.org/10.1115/1.4000311.

    Article  Google Scholar 

  21. Mori, K., Kato, T., Abe, Y., & Ravshanbek, Y. (2006). Plastic joining of ultra high strength steel and aluminum alloy sheets by self piercing rivet. CIRP Annals, 55(1), 283–286. https://doi.org/10.1016/S0007-8506(07)60417-X.

    Article  Google Scholar 

  22. J.E. Carsley, W.W. Cai, G.A. Kruger, P.E. Krajewski, Y.T. Cheng, GM Global Technology Operations LLC. Roller hemming apparatus and method. U.S. Patent 7,290,423 (2007). https://patents.google.com/patent/US7290423B2/en.

  23. Baldan, A. (2012). Adhesion phenomena in bonded joints. International Journal of Adhesion and Adhesives, 38, 95–116. https://doi.org/10.1016/j.ijadhadh.2012.04.007.

    Article  Google Scholar 

  24. Liu, L. M., & Zhao, X. (2008). Study on the weld joint of Mg alloy and steel by laser-GTA hybrid welding. Materials Characterization, 59(9), 1279–1284. https://doi.org/10.1016/j.matchar.2007.10.012.

    Article  Google Scholar 

  25. Tan, C., Li, L., Chen, Y., & Guo, W. (2013). Laser-tungsten inert gas hybrid welding of dissimilar metals AZ31B Mg alloys to Zn coated steel. Material Design, 49, 766–773. https://doi.org/10.1016/j.matdes.2013.02.049.

    Article  Google Scholar 

  26. S. Sahu, O. Thorat, R.P. Mahto, S.K. Pal, P. Srirangam. (2019). A review and case study on mechanical properties and microstructure evolution in magnesium–steel friction stir welding. In: Magnesium Technology, pp. 101–109. Springer, Cham. https://doi.org/10.1007/978-3-030-05789-3_17.

  27. Schneider, C., Weinberger, T., Inoue, J., Koseki, T., & Enzinger, N. (2011). Characterisation of interface of steel/magnesium FSW. Science and Technology of Welding and Joining, 16(1), 100–107. https://doi.org/10.1179/1362171810Y.0000000012.

    Article  Google Scholar 

  28. Chen, Y. C., & Nakata, K. (2010). Effect of surface states of steel on microstructure and mechanical properties of lap joints of magnesium alloy and steel by friction stir welding. Science and Technology of Welding and Joining, 15(4), 293–298. https://doi.org/10.1179/136217109X12568132624325.

    Article  Google Scholar 

  29. Chen, Y. C., & Nakata, K. (2009). Effect of tool geometry on microstructure and mechanical properties of friction stir lap welded magnesium alloy and steel. Materials Design, 30(9), 3913–3919. https://doi.org/10.1016/j.matdes.2009.03.007.

    Article  Google Scholar 

  30. Jana, S., & Hovanski, Y. (2012). Fatigue behaviour of magnesium to steel dissimilar friction stir lap joints. Science and Technology of Welding and Joining, 17(2), 141–145. https://doi.org/10.1179/1362171811Y.0000000083.

    Article  Google Scholar 

  31. Jana, S., Hovanski, Y., & Grant, G. J. (2010). Friction stir lap welding of magnesium alloy to steel: a preliminary investigation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 41(12), 3173–3182. https://doi.org/10.1007/s11661-010-0399-8.

    Article  Google Scholar 

  32. Chen, Y. C., & Nakata, K. (2009). Friction stir lap welding of magnesium alloy and zinc-coated steel. Materials Transactions, 50(11), 2598–2603. https://doi.org/10.2320/matertrans.M2009022.

    Article  Google Scholar 

  33. Wei, Y., Li, J., Xiong, J., Huang, F., & Zhang, F. (2012). Microstructures and mechanical properties of magnesium alloy and stainless-steel weld-joint made by friction stir lap welding. Materials Design, 33, 111–114. https://doi.org/10.1016/j.matdes.2011.07.016.

    Article  Google Scholar 

  34. Song, G., An, G., & Liu, L. (2012). Effect of gradient thermal distribution on butt joining of magnesium alloy to steel with Cu–Zn alloy interlayer by hybrid laser–tungsten inert gas welding. Materials Design, 35, 323–329. https://doi.org/10.1016/j.matdes.2011.09.006.

    Article  Google Scholar 

  35. Casalino, G., Guglielmi, P., Lorusso, V. D., Mortello, M., Peyre, P., & Sorgente, D. (2017). Laser offset welding of AZ31B magnesium alloy to 316 stainless steel. Journal of Materials Processing Technology, 242, 49–59. https://doi.org/10.1016/j.jmatprotec.2016.11.020.

    Article  Google Scholar 

  36. Miao, Y., Han, D., Yao, J., & Li, F. (2010). Effect of laser offsets on joint performance of laser penetration brazing for magnesium alloy and steel. Materials Design, 31(6), 3121–3126. https://doi.org/10.1016/j.matdes.2009.12.035.

    Article  Google Scholar 

  37. Kasai, H., Morisada, Y., & Fujii, H. (2015). Dissimilar FSW of immiscible materials: steel/magnesium. Materials Science and Engineering: A, 624, 250–255. https://doi.org/10.1016/j.msea.2014.11.060.

    Article  Google Scholar 

  38. Wang, T., Shukla, S., Gwalani, B., Komarasamy, M., Reza-Nieto, L., & Mishra, R. S. (2019). Effect of reactive alloy elements on friction stir welded butt joints of metallurgically immiscible magnesium alloys and steel. Journal of Manufacture Processes, 39, 138–145. https://doi.org/10.1016/j.jmapro.2019.02.009.

    Article  Google Scholar 

  39. Liu, L., Xiao, L., Feng, J. C., Tian, Y. H., Zhou, S. Q., & Zhou, Y. (2010). The mechanisms of resistance spot welding of magnesium to steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 41(10), 2651–2661. https://doi.org/10.1007/s11661-010-0333-0.

    Article  Google Scholar 

  40. Liu, L., Xiao, L., Chen, D. L., Feng, J. C., Kim, S., & Zhou, Y. (2013). Microstructure and fatigue properties of Mg-to-steel dissimilar resistance spot welds. Materials Design, 45, 336–342. https://doi.org/10.1016/j.matdes.2012.08.018.

    Article  Google Scholar 

  41. Xu, W., Chen, D. L., Liu, L., Mori, H., & Zhou, Y. (2012). Microstructure and mechanical properties of weld-bonded and resistance spot welded magnesium-to-steel dissimilar joints. Materials Science and Engineering: A, 537, 11–24. https://doi.org/10.1016/j.msea.2011.12.096.

    Article  Google Scholar 

  42. Liyanage, T., Kilbourne, J., Gerlich, A. P., & North, T. H. (2009). Joint formation in dissimilar Al alloy/steel and Mg alloy/steel friction stir spot welds. Science and Technology of Welding and Joining, 14(6), 500–508. https://doi.org/10.1179/136217109X456960.

    Article  Google Scholar 

  43. Patel, V. K., Bhole, S. D., & Chen, D. L. (2013). Formation of zinc interlayer texture during dissimilar ultrasonic spot welding of magnesium and high strength low alloy steel. Materials Design, 45, 236–240. https://doi.org/10.1016/j.matdes.2012.09.018.

    Article  Google Scholar 

  44. Elthalabawy, W. M., & Khan, T. I. (2011). Eutectic bonding of austenitic stainless steel 316L to magnesium alloy AZ31 using copper interlayer. International Journal of Advanced Manufacturing Technology, 55(1–4), 235–241. https://doi.org/10.1007/s00170-010-3026-3.

    Article  Google Scholar 

  45. Yuan, X. J., Sheng, G. M., Luo, J., & Li, J. (2013). Microstructural characteristics of joint region during diffusion-brazing of magnesium alloy and stainless steel using pure copper interlayer. Transactions of Nonferrous Metals Society of China, 23(3), 599–604. https://doi.org/10.1016/S1003-6326(13)62505-4.

    Article  Google Scholar 

  46. Z. Shen, X. Yang, Z. Zhang, L. Cui, & T. Li. (2013). Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joints. Materials & Design, 44, 476–486. https://www.sciencedirect.com/science/article/pii/S0261306912005651

  47. Liu, L., Xiao, L., Feng, J., Li, L., Esmaeili, S., & Zhou, Y. (2011). Bonding of immiscible Mg and Fe via a nanoscale Fe2Al5 transition layer. Script Materials, 65(11), 982–985. https://doi.org/10.1016/j.scriptamat.2011.08.026.

    Article  Google Scholar 

  48. Liu, L., & Qi, X. (2009). Effects of copper addition on microstructure and strength of the hybrid laser-TIG welded joints between magnesium alloy and mild steel. Journal of Materials Science, 44(21), 5725–5731. https://doi.org/10.1007/s10853-009-3797-9.

    Article  Google Scholar 

  49. Liu, L., Zou, G., Mori, H., Esmaeili, S., & Zhou, Y. N. (2016). Nanostructure of immiscible Mg–Fe dissimilar weld without interfacial intermetallic transition layer. Material Design, 92, 445–449. https://doi.org/10.1016/j.matdes.2015.12.072.

    Article  Google Scholar 

  50. Ma, E. (2006). Dissolving equilibrium-immiscible elements via severe plastic deformation. Materials Transactions, 47(5), 1269–1274. https://doi.org/10.2320/matertrans.47.1269.

    Article  Google Scholar 

  51. Komarasamy, M., Mishra, R. S., Mukherjee, S., & Young, M. L. (2015). Friction stir-processed thermally stable immiscible nanostructured alloys. JOM Journal of the Minerals Metals and Materials Society, 67(12), 2820–2827. https://doi.org/10.1007/s11837-015-1641-z.

    Article  Google Scholar 

  52. Wang, T., Komarasamy, M., Shukla, S., & Mishra, R. S. (2018). Simultaneous enhancement of strength and ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy via friction stir processing. Journal of Alloys Compound, 766, 312–317. https://doi.org/10.1016/j.jallcom.2018.06.337.

    Article  Google Scholar 

  53. Meitei, R. B., Maji, P., Samadhiya, A., Karmakar, R., Ghosh, S. K., & Saha, S. C. (2019). An experimental investigation on joining of copper and stainless steel by induction welding technique. International Journal of Precision Engineering and Manufacturing. https://doi.org/10.1007/s12541-019-00284-w.

    Article  Google Scholar 

  54. Munz, D., & Yang, Y. Y. (1992). Stress singularities at the interface in bonded dissimilar materials under mechanical and thermal loading. Journal of Applied Mechanics, 59(4), 857–861. https://doi.org/10.1115/1.2894053.

    Article  Google Scholar 

  55. T. Wang, & R. Mishra. (2019). Effect of stress concentration on strength and fracture behavior of dissimilar metal joints. In: Friction Stir Welding and Processing X (2019), pp. 33–39. Springer International Publishing. https://doi.org/10.1007/978-3-030-05752-7_4.

  56. Wang, T., Shukla, S., Nene, S. S., Frank, M., Wheeler, R. W., & Mishra, R. S. (2018). Towards obtaining sound butt joint between metallurgically immiscible pure Cu and stainless steel through friction stir welding. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 49(7), 2578–2582. https://doi.org/10.1007/s11661-018-4637-9.

    Article  Google Scholar 

  57. Wang, T., Komarasamy, M., Liu, K., & Mishra, R. S. (2018). Friction stir butt welding of strain-hardened aluminum alloy with high strength steel. Materials Science and Engineering: A, 737, 85–89. https://doi.org/10.1016/j.msea.2018.09.035.

    Article  Google Scholar 

  58. Y. Hovanski, G.J. Grant, S. Jana, & K.F. Mattlin (2013). Battelle Memorial Institute Inc., Friction stir welding tool and process for welding dissimilar materials. U.S. Patent 8,434,661. https://patents.google.com/patent/US8434661B2/en?oq=U.S.+Patent+8%2c434%2c661.

  59. Wang, T., Sidhar, H., Mishra, R. S., Hovanski, Y., Upadhyay, P., & Carlson, B. (2019). Effect of hook characteristics on the fracture behaviour of dissimilar friction stir welded aluminium alloy and mild steel sheets. Science and Technology of Welding and Joining, 24(2), 178–184. https://doi.org/10.1080/13621718.2018.1503801.

    Article  Google Scholar 

  60. Wang, T., Sidhar, H., Mishra, R. S., Hovanski, Y., Upadhyay, P., & Carlson, B. (2018). Friction stir scribe welding technique for dissimilar joining of aluminium and galvanised steel. Science and Technology of Welding and Joining, 23(3), 249–255. https://doi.org/10.1080/13621718.2017.1381460.

    Article  Google Scholar 

  61. Gupta, V., Upadhyay, P., Fifield, L. S., Roosendaal, T., Sun, X., Nelaturu, P., et al. (2018). Linking process and structure in the friction stir scribe joining of dissimilar materials: A computational approach with experimental support. J. Manuf. Process., 32, 615–624. https://doi.org/10.1016/j.jmapro.2018.03.030.

    Article  Google Scholar 

  62. Reza-E-Rabby, M., Ross, K., Overman, N. R., Olszta, M. J., McDonnell, M., & Whalen, S. A. (2018). Joining thick section aluminum to steel with suppressed FeAl intermetallic formation via friction stir dovetailing. Script Materials, 148, 63–67. https://doi.org/10.1016/j.scriptamat.2018.01.026.

    Article  Google Scholar 

  63. Y. Zhang, S.S. Babu, C. Prothe, M. Blakely, J. Kwasegroch, M. LaHa, & G.S. Daehn. (2011). Application of high velocity impact welding at varied different length scales. Journal of Materials Processing Technology, 211(5), 944–952. https://www.sciencedirect.com/science/article/pii/S0924013610000051

  64. V. Gupta, T. Lee, A. Vivek, K.S. Choi, Y. Mao, X. Sun, & G. Daehn, (2019). A robust process-structure model for predicting the joint interface structure in impact welding. Journal of Materials Processing Technology, 264, 107–118. https://www.sciencedirect.com/science/article/pii/S0924013618303893

  65. Fallahi, A. A., Shokuhfar, A., Moghaddam, A. O., & Abdolahzadeh, A. (2017). Analysis of SiC nano-powder effects on friction stir welding of dissimilar Al-Mg alloy to A316L stainless steel. Journal of Manufacture Process, 30, 418–430. https://doi.org/10.1016/j.jmapro.2017.09.027.

    Article  Google Scholar 

  66. Y. Huang, Z. Lv, L. Wan, J. Shen & J.F. dos Santos. (2017). A new method of hybrid friction stir welding assisted by friction surfacing for joining dissimilar Ti/Al alloy. Materials Letters, 207, 172–175. https://www.sciencedirect.com/science/article/pii/S0167577X17311254

  67. L. Zhou, M. Yu, B. Liu, Z. Zhang, S. Liu, X. Song, & H. Zhao (2019). Microstructure and mechanical properties of Al/steel dissimilar welds fabricated by friction surfacing assisted friction stir lap welding. Journal of Materials Research and Technology. https://www.sciencedirect.com/science/article/pii/S2238785419311585

  68. Ning, J., Sievers, D. E., Garmestani, H., & Liang, S. Y. (2019). Analytical modeling of in-process temperature in powder feed metal additive manufacturing considering heat transfer boundary condition. International Journal of Precision Engineering and Manufacturing-Green Technology, pp. 1–9. https://link.springer.com/article/10.1007/s40684-019-00164-8

  69. Ning, J., Sievers, D. E., Garmestani, H., & Liang, S. Y. (2019). Analytical modeling of transient temperature in powder feed metal additive manufacturing during heating and cooling stages. Applied Physics A, 125(8), 496. https://doi.org/10.1007/2Fs00339-019-2782-7.

    Article  Google Scholar 

  70. J. Ning, D. E. Sievers, H. Garmestani, & S. Y. Liang. (2019). Analytical modeling of in-process temperature in powder bed additive manufacturing considering laser power absorption, latent heat, scanning strategy, and powder packing. Materials, 12(5), 808. https://www.mdpi.com/1996-1944/12/5/808

Download references

Acknowledgements

The authors acknowledge the support of the U.S. Department of Energy Vehicle Technologies Office (DOE/VTO) Joining Core Program. The Pacific Northwest National Laboratory is operated by the Battelle Memorial Institute for the United States Department of Energy under contract DE-AC06-76LO1830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhao Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Upadhyay, P. & Whalen, S. A Review of Technologies for Welding Magnesium Alloys to Steels. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 1027–1042 (2021). https://doi.org/10.1007/s40684-020-00247-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00247-x

Keywords

Navigation