Skip to main content

Advertisement

Log in

From Venom to AChE Inhibitor: Design, Molecular Modeling, and Synthesis of a Peptidic Inhibitor of AChE

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is an irreversible and progressive brain disorder that slowly destroys memory and cognitive skills. The current treatment of AD mainly focused on the restoring of ACh levels through acetylcholinesterase (AChE) inhibition. Peptides are a unique class of pharmaceutical compounds that have privilege over small molecules, especially in the realm of protein–protein interactions and G protein-coupled receptor (GPCR) inhibitors. We applied a rational structure-based virtual design approach to discover new peptidic inhibitors of AChE. In this regard, conformational space in the fasciculin II (Fas) and AChE complex was evaluated utilizing MD simulation, principal component analysis and clustering to figure out possible interactions of Fas and AChE. Assessment of Fas–AChE interactions by visual evaluation and alanine scanning led to the design of 10 peptides. The highest scored peptide (p2) was selected and synthesized using SPPS. Based on Ellman's test, the inhibitory activity of p2 against AChE was 51.2 ± 8.1 µM. The kinetics study of the enzyme inhibition in accompany with molecular modeling results revealed that p2 was a mixed-type reversible inhibitor of AChE. The DNRMLRTTRY peptide was considerable inhibitor of AChE. Peptides have the merit of being big enough to inhibit PPI and GPCR class B with a wide binding site. But possible peptidic chemical space is too large to be evaluated by the classical peptide synthesis methods. In the present contribution, we introduced a rational in silico peptide design approach that led to the considerable peptidic inhibitor of AChE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alvarez A, Opazo C, Alarcon R, Garrido J, Inestrosa NC (1997) Acetylcholinesterase promotes the aggregation of amyloid-beta-peptide fragments by forming a complex with the growing fibrils. J Mol Biol 272:348–361. https://doi.org/10.1006/jmbi.1997.1245

    Article  CAS  PubMed  Google Scholar 

  • Alves CQ et al (2013) In vitro acetylcholinesterase activity of peptide derivatives isolated from two species of Leguminosae. Pharm Biol 51:936–939

    Article  CAS  PubMed  Google Scholar 

  • Amblard M, Fehrentz JA, Martinez J, Subra G (2006) Methods and protocols of modern solid phase peptide synthesis. Mol Biotechnol 33:239–254. https://doi.org/10.1385/mb:33:3:239

    Article  CAS  PubMed  Google Scholar 

  • Ano Y, Ayabe T, Ohya R, Kondo K, Kitaoka S, Furuyashiki T (2019) Tryptophan-tyrosine dipeptide, the core sequence of β-lactolin, improves memory by modulating the dopamine system. Nutrients 11:348

    Article  CAS  PubMed Central  Google Scholar 

  • Alzheimer's Association (2018) Alzheimer's disease facts and figures. Alzheimers Dement 14:367–429

    Article  Google Scholar 

  • Bajda M et al (2020) Search for new multi-target compounds against Alzheimer’s disease among histamine H3 receptor ligands. Eur J Med Chem 185:111785

    Article  CAS  PubMed  Google Scholar 

  • Bechara C, Sagan S (2013) Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett 587:1693–1702

    Article  CAS  PubMed  Google Scholar 

  • Bolognesi ML, Cavalli A (2016) Multitarget drug discovery and polypharmacology. ChemMedChem 11:1190–1192

    Article  CAS  PubMed  Google Scholar 

  • Bourne Y, Taylor P, Marchot P (1995) Acetylcholinesterase inhibition by fasciculin: crystal structure of the complex. Cell 83:503–512

    Article  CAS  PubMed  Google Scholar 

  • Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101

    Article  PubMed  Google Scholar 

  • Craig LA, Hong NS, McDonald RJ (2011) Revisiting the cholinergic hypothesis in the development of Alzheimer's disease. Neurosci Biobehav Rev 35:1397–1409

    Article  CAS  PubMed  Google Scholar 

  • Cummings JL (2004) Alzheimer’s disease. N Engl J Med 351:56–67

    Article  CAS  PubMed  Google Scholar 

  • Dastan D, Validi S, Ebadi A (2020) Kamonolol acetate from Ferula pseudalliacea as AChE inhibitor: in vitro and in silico studies. Struct Chem. https://doi.org/10.1007/s11224-019-01473-z

    Article  Google Scholar 

  • De Ferrari GV, Canales MA, Shin I, Weiner LM, Silman I, Inestrosa NC (2001a) A structural motif of acetylcholinesterase that promotes amyloid beta-peptide fibril formation. Biochemistry 40:10447–10457. https://doi.org/10.1021/bi0101392

    Article  CAS  PubMed  Google Scholar 

  • De Ferrari GV, Canales MA, Shin I, Weiner LM, Silman I, Inestrosa NC (2001b) A structural motif of acetylcholinesterase that promotes amyloid β-peptide fibril formation. Biochemistry 40:10447–10457

    Article  PubMed  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Falkenstein RJ, Pena C (1999) Interaction of synthetic peptides from fasciculin with acetylcholinesterase. J Protein Chem 18:233–238

    Article  CAS  PubMed  Google Scholar 

  • Falkenstein RJ, Peña C (1997) Synthetic peptides derived from the central loop of fasciculin: structural analysis and evaluation as inhibitors of acetylcholinesterase. Biochim Biophys Acta 1340:143–151

    Article  CAS  PubMed  Google Scholar 

  • Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128

    Article  CAS  PubMed  Google Scholar 

  • Hampel H et al (2019) Revisiting the cholinergic hypothesis in Alzheimer’s disease: emerging evidence from translational and clinical research. J Prev Alzheimers Dis 6:2–15

    CAS  PubMed  Google Scholar 

  • Hampel H et al (2018) The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 141:1917–1933

    Article  PubMed  PubMed Central  Google Scholar 

  • Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  PubMed  Google Scholar 

  • Inestrosa NC et al (1996) Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer's fibrils: possible role of the peripheral site of the enzyme. Neuron 16:881–891. https://doi.org/10.1016/s0896-6273(00)80108-7

    Article  CAS  PubMed  Google Scholar 

  • Kortemme T, Baker D (2002) A simple physical model for binding energy hot spots in protein–protein complexes. Proc Natl Acad Sci 99:14116–14121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laskowski RA, Jabłońska J, Pravda L, Vařeková RS, Thornton JM (2018) PDBsum: structural summaries of PDB entries. Protein Sci 27:129–134

    Article  CAS  PubMed  Google Scholar 

  • Mondal P, Gupta V, Das G, Pradhan K, Khan J, Gharai PK, Ghosh S (2018) Peptide-based acetylcholinesterase inhibitor crosses the blood-brain barrier and promotes neuroprotection. ACS Chem Neurosci 9:2838–2848

    Article  CAS  PubMed  Google Scholar 

  • Nachon F, Carletti E, Ronco C, Trovaslet M, Nicolet Y, Jean L, Renard P-Y (2013) Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer's drugs targeting acetyl-and butyryl-cholinesterase. Biochem J 453:393–399

    Article  CAS  PubMed  Google Scholar 

  • Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  • Parthasarathy A, Anandamma SK, Kalesh KA (2019) The medicinal chemistry of therapeutic peptides: recent developments in synthesis and design optimizations. Curr Med Chem 26(13):2330–2355

    Article  PubMed  Google Scholar 

  • Radić Z, Duran R, Vellom DC, Li Y, Cervenansky C, Taylor P (1994) Site of fasciculin interaction with acetylcholinesterase. J Biol Chem 269:11233–11239

    Article  PubMed  Google Scholar 

  • Razzaghi-Asl N, Ebadi A (2020) In silico design of peptide inhibitors of tubulin: amyloid-β as a lead compound. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1764391

    Article  PubMed  PubMed Central  Google Scholar 

  • Saxena A, Saini R (2018) The structural hybrids of acetylcholinesterase inhibitors in the treatment of Alzheimer’s disease: a review. J Alzheimers Neurodegener Dis 4:015

    Google Scholar 

  • Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med 8:595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Zundert G et al (2016) The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428:720–725

    Article  PubMed  Google Scholar 

  • Waqar M, Batool S (2015) In silico analysis of binding of neurotoxic venom ligands with acetylcholinesterase for therapeutic use in treatment of Alzheimer's disease. J Theor Biol 372:107–117. https://doi.org/10.1016/j.jtbi.2015.02.028

    Article  CAS  PubMed  Google Scholar 

  • Wilson RS, Segawa E, Boyle PA, Anagnos SE, Hizel LP, Bennett DA (2012) The natural history of cognitive decline in Alzheimer's disease. Psychol Aging 27:1008

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Z et al (2018) Anti-Alzheimers activity and molecular mechanism of albumin-derived peptides against AChE and BChE. Food Funct 9:1173–1178

    Article  CAS  PubMed  Google Scholar 

  • Zare-Zardini H, Tolueinia B, Hashemi A, Ebrahimi L, Fesahat F (2013) Antioxidant and cholinesterase inhibitory activity of a new peptide from Ziziphus jujuba fruits. Am J Alzheimers Dis Other Demen 28:702–709. https://doi.org/10.1177/1533317513500839

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Research and Technology Vice-chancellor of Hamadan University of Medical Sciences for financial support. This research was funded by Vice-chancellor for Research and Technology, Hamadan University of Medical Sciences (No. 9604132260).

Funding

Hamadan University of Medical Sciences, Grant Number: 9604132260.

Author information

Authors and Affiliations

Authors

Contributions

AE: experimental design, molecular modeling and SPPS25 KF: molecular modeling and SPPS26 DD: experimental design, HPLC and ESI–Ms characterization.

Corresponding author

Correspondence to Ahmad Ebadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dastan, D., Fasihi, K. & Ebadi, A. From Venom to AChE Inhibitor: Design, Molecular Modeling, and Synthesis of a Peptidic Inhibitor of AChE. Int J Pept Res Ther 27, 463–474 (2021). https://doi.org/10.1007/s10989-020-10103-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-020-10103-w

Keywords

Navigation