Skip to main content
Log in

Effectiveness of Smoke Confinement of Air Curtain in Tunnel Fire

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Air curtain is an effective means to stop the propagation of smoke in buildings to provide smoke-free area for safe egress of occupants in case of fires. To understand its effectiveness of smoke confinement in tunnel fires, full-scale tests were conducted in a tunnel of 140 m long and with varying heights of 5.0 m to 5.9 m and varying widths of 5.8 m to 10.8 m. A 20 cm-wide air curtain spanning entire lateral section was installed underneath the tunnel ceiling. The experiment showed that air curtain at exit velocities of 12 m/s and 16 m/s can stop the propagation of smoke produced by 1 MW fire and 2 MW fire respectively. Numerical simulation using ANSYS FLUENT was then conducted and the numerical results were basically consistent with those of experiment. To explore how the design parameters of air curtain, i.e., the width, the exit velocity and its angle, affect its effectiveness of smoke confinement at varying heat release rates, a number of numerical simulations were further conducted. The relationship of design parameters of air curtain with heat release rates was proposed and it can be used in the design of air curtain in tunnel fires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33

Similar content being viewed by others

References

  1. Mashimo H (2002) State of the road tunnel safety technology in Japan. Tunn Undergr Space Technol Inc Trenchless Technol Res 17(2):145–152

    Article  Google Scholar 

  2. Meng N, Hu LH, Zhu S, Yang LZ (2014) Effect of smoke screen height on smoke flow temperature profile beneath platform ceiling of subway station: an experimental investigation and scaling correlation. Tunn Undergr Space Technol 43(7):204–212

    Article  Google Scholar 

  3. Alarie Y (2002) Toxicity of fire smoke. Crit Rev Toxicol 32(4):259–289

    Article  Google Scholar 

  4. Fan CG, Ji J, Gao ZH, Han JY, Sun JH (2013) Experimental study of air entrainment mode with natural ventilation; using shafts in road tunnel fires. Int J Heat Mass Transf 56(1–2):750–757

    Article  Google Scholar 

  5. Hietaniemi J, Kallonen R, Mikkola E (2015) Burning characteristics of selected substances: production of heat, smoke and chemical species. Fire Mater 23(4):171–185

    Article  Google Scholar 

  6. Zhou Y, Yang Y, Mao ZL, Bu RW, Gong JH, Wang YX et al (2019) Analytical and numerical study on natural ventilation in single-and gable-slope city tunnels. Sustain Cities Soc 45:258–270

    Article  Google Scholar 

  7. Atkinson GT, Wu Y (1996) Smoke control in sloping tunnels. Fire Saf J 27(4):335–341

    Article  Google Scholar 

  8. Tang Z, Liu YJ, Yuan JP, Fang Z (2017) Study of the critical velocity in tunnels with longitudinal ventilation and spray systems. Fire Saf J 90:139–147

    Article  Google Scholar 

  9. Li MX, Zhang ZJ, Milke J, Lu GJ, Mei XJ (2018) Experimental research on the smoke control system in a complex road tunnel fire. Procedia Eng 211:379–387

    Article  Google Scholar 

  10. Shih YC, Yang AS, Lu CW (2011) Using air curtain to control pollutant spreading for emergency management in a cleanroom. Build Environ 46(5):1104–1114

  11. Foster AM, Barrett R, James SJ, Swain MJ (2002) Measurement and prediction of air movement through doorways in refrigerated rooms. Int J Refrig 25(8):1102–1109

    Article  Google Scholar 

  12. Chen YG, Yuan XL (2005) Experimental study of the performance of single-band air curtains for a multi-deck refrigerated display cabinet. J Food Eng 69(3):261–267

    Article  MathSciNet  Google Scholar 

  13. Hetsroni G, Hall CW, Dhanak AM (1963) Heat-transfer properties of an air curtain. Trans ASAE 6(4):328-0331

    Article  Google Scholar 

  14. Gonçalves JC, Costa JJ, Figueiredo AR, Lopes AMG (2012) CFD modelling of aerodynamic sealing by vertical and horizontal air curtains. Energy Build 52(3):153–160

    Article  Google Scholar 

  15. Vega MG (2008) Numerical 3D simulation of a longitudinal ventilation system: memorial tunnel case. Tunn Undergr Space Technol Inc Trenchless Technol Res 23(5):539–551

    Article  Google Scholar 

  16. Ciocănea A, Dragomirescu A (2013) Modular ventilation with twin air curtains for reducing dispersed pollution. Tunn Undergr Space Technol Inc Trenchless Technol Res 37(6):180–198

    Article  Google Scholar 

  17. Moureh J, Yataghene M (2016) Numerical and experimental study of airflow patterns and global exchanges through an air curtain subjected to external lateral flow. Exp Therm Fluid Sci 74:308–323

    Article  Google Scholar 

  18. Zhang L, Yan ZZ, Li ZH, Wang XM, Han XF, Jiang JC (2018) Study on the Effect of the jet speed of air curtain on smoke control in tunnel. Procedia Eng 211:1026–1033

    Article  Google Scholar 

  19. Krajewski G, Węgrzyński W (2015) Air curtain as a barrier for smoke in case of fire: Numerical modelling. Bull Pol Acad Sci Tech Sci 63(1):145–153

    Google Scholar 

  20. Ballesteros-Tajadura R, Santolaria-Morros C, Blanco-Marigorta E (2006) Influence of the slope in the ventilation semi-transversal system of an urban tunnel. Tunn Undergr Space Technol 21(1):21–28

    Article  Google Scholar 

  21. Kang K (2006) Computational study of longitudinal ventilation control during an enclosure fire within a tunnel. J Fire Prot Eng 16(3):159–181

    Article  Google Scholar 

  22. Lin P, Lo SM, Li T (2014) Numerical study on the impact of gradient on semi-transverse smoke control system in tunnel. Tunn Undergr Space Technol Inc Trenchless Technol Res 44(3):68–79

    Article  Google Scholar 

  23. Li YZ, Ingason H (2018) Overview of research on fire safety in underground road and railway tunnels. Tunn Undergr Space Technol 81:568–589

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly  acknowleged the financial support from National Natural Science Foundation of China (No. 1974161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, D., Li, T., Mei, X. et al. Effectiveness of Smoke Confinement of Air Curtain in Tunnel Fire. Fire Technol 56, 2283–2314 (2020). https://doi.org/10.1007/s10694-020-00977-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-020-00977-z

Keywords

Navigation