Skip to main content
Log in

A Bio-Inspired Frequency-Based Approach for Tailorable and Scalable Speckle Pattern Generation

  • Research paper
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

Digital Image Correlation (DIC) is a length scale independent surface pattern matching and tracking algorithm capable of providing full field deformation measurements. The confident registration of this pattern within the imaging system becomes key to the derived results. Practically, conventional speckling methods use non-reliable, non-repeatable patterning methodologies including spray paints and air brushing leading to increased systematic and random errors based on the user’s experience.

Objective

A methodology to develop a speckle pattern tailored to the imaging and experimental conditions of the given system is developed in this paper.

Methods

In this context, a novel bio-inspired speckle pattern development technique is introduced, leveraging spatial imaging parameters in addition to frequency characteristics of speckle patterns, enhancing the results obtained through DIC. This novel technique leverages gradient parameters in the frequency spectrum obtained from patterns fabricated using a bio-templating manufacturing technique.

Results

The analysis presented shows that optimized gradient features alongside tailored spatial characteristics reduce errors while increasing the usefulness of DIC results across the entire region of interest. With this new approach, gradient information is derived from the bio-templated pattern, extracted, optimized and then convolved with spatial properties of a numerically generated 2D point clouds which can then be transferred onto actual specimens. Numerical error analysis shows that the optimized patterns result in significant reduction in root mean square error compared to conventional speckling methods.

Conclusions

Physical experiments show the scalability of this optimized pattern to allow for varying working distances while consistently maintaining a lower error threshold compared to conventional speckling techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Peters W, Ranson W (1982) Digital imaging techniques in experimental stress analysis. OPTICE 21(3):213427

    Article  Google Scholar 

  2. Sutton M, Wolters W, Peters W, Ranson W, McNeill S (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1(3):133–139

    Article  Google Scholar 

  3. Sutton M, Mingqi C, Peters W, Chao Y, McNeill S (1986) Application of an optimized digital correlation method to planar deformation analysis. Image Vis Comput 4(3):143–150

    Article  Google Scholar 

  4. Sutton MA, McNeill SR, Jang J, Babai M (1988) Effects of subpixel image restoration on digital correlation error estimates. OPTICE 27(10):271070

    Article  Google Scholar 

  5. Peters W, Sutton M, Ranson W, Poplin W, Walker D (1989) Whole-field experimental displacement analysis of composite cylinders. Exp Mech 29(1):58–62

    Article  Google Scholar 

  6. Sutton M, Turner J, Chao Y, Bruck H, Chae T (1992) Experimental investigations of three-dimensional effects near a crack tip using computer vision. Int J Fract 53(3):201–228

    Google Scholar 

  7. Olson LE, Abrego A, Barrows DA, Burner AW (2010). Blade deflection measurements of a full-scale UH-60A rotor system

  8. LeBlanc B, Niezrecki C, Avitabile P (2010). Structural health monitoring of helicopter hard landing using 3D digital image correlation. In: Health Monitoring of Structural and Biological Systems, 2010. International Society for Optics and Photonics, p 76501V

  9. Caporossi P, Mazzanti P, Bozzano F (2018) Digital image correlation (DIC) analysis of the 3 December 2013 Montescaglioso landslide (Basilicata, southern Italy): results from a multi-dataset investigation. ISPRS Int J Geo Inf 7(9):372

    Article  Google Scholar 

  10. Sutton M, Ke X, Lessner S, Goldbach M, Yost M, Zhao F, Schreier H (2008) Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 84(1):178–190

    Article  Google Scholar 

  11. Eleftheroglou N, Zarouchas D, Loutas T, Alderliesten R, Benedictus R (2018) Structural health Monitoring data fusion for in-situ life prognosis of composite structures. Reliab Eng Syst Saf 178:40–54

    Article  Google Scholar 

  12. Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20(6):062001

    Article  Google Scholar 

  13. Sutton MA, Orteu JJ, Schreier H (2009). Image correlation for shape, Motion and Deformation Measurements: Basic Concepts,Theory and Applications. Springer Publishing Company, Incorporated,

  14. Lecompte D, Sol H, Vantomme J, Habraken A (2006) Analysis of speckle patterns for deformation measurements by DIC. Proceedings of SPIE 6341:E1–E6

    Google Scholar 

  15. Lecompte D, Smits A, Bossuyt S, Sol H, Vantomme J, Van Hemelrijck D, Habraken A (2006) Quality assessment of speckle patterns for digital image correlation. Opt Lasers Eng 44(11):1132–1145

    Article  Google Scholar 

  16. Stoilov G, Kavardzhikov V, Pashkouleva D (2012) A comparative study of random patterns for digital image correlation. J Theor Appl Mech 42(2):55–66

    Article  Google Scholar 

  17. Su Y, Zhang Q, Xu X, Gao Z (2016) Quality assessment of speckle patterns for DIC by consideration of both systematic errors and random errors. Opt Lasers Eng 86:132–142

    Article  Google Scholar 

  18. Hua T, Xie H, Wang S, Hu Z, Chen P, Zhang Q (2011) Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation. Opt Laser Technol 43(1):9–13

    Article  Google Scholar 

  19. Pan B, Lu Z, Xie H (2010) Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation. Opt Lasers Eng 48(4):469–477

    Article  Google Scholar 

  20. Lane C, Burguete RL (2008) Shterenlikht a an objective criterion for the selection of an optimum DIC pattern and subset size. Proceedings of the XIth International Congress and Exposition, pp 1–9

  21. Bossuyt S (2013) Optimized patterns for digital image correlation. In: Jin H, Sciammarella C, Furlong C, Yoshida S (eds) Imaging methods for novel materials and challenging applications, Proceedings of the 2012 annual conference on experimental and applied mechanics, vol 3. Springer New York, New York, NY, pp 239–248. https://doi.org/10.1007/978-1-4614-4235-6_34

    Chapter  Google Scholar 

  22. Liu X-Y, Li R-L, Zhao H-W, Cheng T-H, Cui G-J, Tan Q-C, Meng G-W (2015) Quality assessment of speckle patterns for digital image correlation by Shannon entropy. Optik-International Journal for Light and Electron Optics 126(23):4206–4211

    Article  Google Scholar 

  23. Dong Y, Pan B (2017) A review of speckle pattern fabrication and assessment for digital image correlation. Exp Mech 57(8):1161–1181

    Article  Google Scholar 

  24. Yaofeng S, Pang JH (2007) Study of optimal subset size in digital image correlation of speckle pattern images. Opt Lasers Eng 45(9):967–974

    Article  Google Scholar 

  25. Dong YL, Pan BJEM (2017) A Review Of Speckle Pattern Fabrication And Assessment For Digital Image Correlation. 57(8):1161–1181. https://doi.org/10.1007/s11340-017-0283-1

  26. Sutton M, Ke X, Lessner S, Goldbach M, Yost M, Zhao F, Schreier HJJoBMRPAAOJoTSfB (2008). The japanese society for biomaterials,, biomaterials TASf, Biomaterials tKSf Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation. 84 (1):178–190

  27. Jonnalagadda K, Chasiotis I, Yagnamurthy S, Lambros J, Pulskamp J, Polcawich R, MJEm D (2010) Experimental investigation of strain rate dependence of nanocrystalline Pt films. 50(1):25–35

  28. Li N, Guo S, Sutton MA (2011) Recent progress in e-beam lithography for SEM patterning. In: MEMS and nanotechnology, volume 2. Springer, pp 163–166

  29. Kammers AD, Daly SJEM (2013) Self-assembled nanoparticle surface patterning for improved digital image correlation in a scanning electron microscope. 53(8):1333–1341

  30. Reu PL, Sweatt W, Miller T, Fleming D (2015) Camera system resolution and its influence on digital image correlation. Exp Mech 55(1):9–25. https://doi.org/10.1007/s11340-014-9886-y

    Article  Google Scholar 

  31. Pan B, Xie H, Wang Z, Qian K, Wang Z (2008) Study on subset size selection in digital image correlation for speckle patterns. Opt Express 16(10):7037–7048

    Article  Google Scholar 

  32. Zhou P, Goodson KE (2001) Subpixel displacement and deformation gradient measurement using digital image/speckle correlation. OPTICE 40(8):1613–1621

    Article  Google Scholar 

  33. Schreier HW, Braasch JR, Sutton MA (2000) Systematic errors in digital image correlation caused by intensity interpolation. OPTICE 39(11):2915–2921

    Article  Google Scholar 

  34. Mathew M, Ellenberg A, Esola S, McCarthy M, Bartoli I, Kontsos AJSC, Monitoring H (2018) Multiscale deformation measurements using multispectral optical metrology. 25(6):e2166

  35. Wang Y, Sutton M, Bruck H, Schreier H (2009) Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements. Strain 45(2):160–178

    Article  Google Scholar 

  36. Bomarito G, Hochhalter J, Ruggles T, Cannon AJO (2017) Engineering Li, Increasing accuracy and precision of digital image correlation through pattern optimization. 91:73–85

  37. Su Y, Gao Z, Fang Z, Liu Y, Wang Y, Zhang Q, Wu S (2019) Theoretical analysis on performance of digital speckle pattern: uniqueness, accuracy, precision, and spatial resolution. Opt Express 27(16):22439–22474. https://doi.org/10.1364/OE.27.022439

    Article  Google Scholar 

  38. Bornert M, Brémand F, Doumalin P, Dupré J-C, Fazzini M, Grédiac M, Hild F, Mistou S, Molimard J, Orteu J-J (2009) Assessment of digital image correlation measurement errors: methodology and results. Exp Mech 49(3):353–370

    Article  Google Scholar 

  39. Amiot F, Bornert M, Doumalin P, Dupré JC, Fazzini M, Orteu JJ, Poilâne C, Robert L, Rotinat R, Toussaint E (2013) Assessment of digital image correlation measurement accuracy in the ultimate error regime: main results of a collaborative benchmark. Strain 49(6):483–496

    Article  Google Scholar 

  40. Xu X, Su Y, Cai Y, Cheng T, Zhang Q (2015) Effects of various shape functions and subset size in local deformation measurements using DIC. Exp Mech 55(8):1575–1590

    Article  Google Scholar 

  41. Schreier HW, Sutton MA (2002) Systematic errors in digital image correlation due to undermatched subset shape functions. Exp Mech 42(3):303–310

    Article  Google Scholar 

  42. Luu L, Wang Z, Vo M, Hoang T, Ma J (2011) Accuracy enhancement of digital image correlation with B-spline interpolation. Opt Lett 36(16):3070–3072

    Article  Google Scholar 

  43. Mazzoleni P, Matta F, Zappa E, Sutton MA, Cigada A (2015) Gaussian pre-filtering for uncertainty minimization in digital image correlation using numerically-designed speckle patterns. Opt Lasers Eng 66:19–33

    Article  Google Scholar 

  44. Rahman MM, Ölçeroğlu E, McCarthy M (2014) Scalable Nanomanufacturing of virus-templated coatings for enhanced boiling. Adv Mater Interfaces 1(2):1300107

    Article  Google Scholar 

  45. Zhao J, Sang Y, Duan F (2019) The state of the art of two-dimensional digital image correlation computational method. Engineering Reports 1(2):e12038

    Article  Google Scholar 

  46. Gonzalez RC, Woods RE, Eddins SL (2004) Digital image processing using MATLAB, vol 624. Pearson-Prentice-Hall Upper Saddle River, New Jersey

    Google Scholar 

  47. Chen Z, Quan C, Zhu F, He X (2015) A method to transfer speckle patterns for digital image correlation. Meas Sci Technol 26(9):095201

    Article  Google Scholar 

  48. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics 9(1):62–66

    Article  Google Scholar 

  49. Reu PL (2011) Experimental and numerical methods for exact subpixel shifting. Exp Mech 51(4):443–452

    Article  Google Scholar 

  50. Bornert M, Doumalin P, Dupré J, Poilâne C, Robert L, Toussaint E, Wattrisse B (2012). Short remarks about synthetic image generation in the context of the assessment of sub-pixel accuracy of digital image correlation. In: Experimental Mechanics. New Trends and Perspectives. Proc. 15th Int. Conf. Exp. Mech, .EuraSEM, Edições INEGI, Porto, Portugal,

  51. LePage W, Shaw J, Daly S (2017) Optimum paint sequence for speckle patterns in digital image correlation. Exp Tech 41(5):557–563

    Article  Google Scholar 

  52. Mathew M, Ellenberg A, Esola S, McCarthy M, Bartoli I, Kontsos A (2018) Multiscale deformation measurements using multispectral optical metrology. Structural control and health Monitoring 25(6):e2166. https://doi.org/10.1002/stc.2166

    Article  Google Scholar 

  53. Tekerek E, Liu D, Wisner B, Mathew M, Castaneda N, Oncul M, Kontsos A n.d.. Experimental investigation of the multiscale mechanical behavior of knitted textiles. Material Design & Processing Communications:e106

  54. Cannon AH, Hochhalter JD, Mello AW, Bomarito GF, Sangid MD (2015) Microstamping for improved speckle patterns to enable digital image correlation. Microsc Microanal 21(S3):451–452

    Article  Google Scholar 

  55. Carter JL, Uchic MD, Mills MJ (2015) Impact of speckle pattern parameters on DIC strain resolution calculated from in-situ SEM experiments. In: fracture, fatigue, failure, and damage evolution, volume 5. Springer, pp 119–126

  56. Vendroux G, Knauss W (1998) Submicron deformation field measurements: part 2. Improved digital image correlation. Exp Mech 38(2):86–92

    Article  Google Scholar 

  57. Tao G, Xia Z (2005) A non-contact real-time strain measurement and control system for multiaxial cyclic/fatigue tests of polymer materials by digital image correlation method. Polym Test 24(7):844–855

    Article  Google Scholar 

  58. Pan B, Tian L, Song X (2016) Real-time, non-contact and targetless measurement of vertical deflection of bridges using off-axis digital image correlation. Ndt & E International 79:73–80

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the financial support received by the National Science Foundation (#1538389).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kontsos.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathew, M., Wisner, B., Ridwan, S. et al. A Bio-Inspired Frequency-Based Approach for Tailorable and Scalable Speckle Pattern Generation. Exp Mech 60, 1103–1117 (2020). https://doi.org/10.1007/s11340-020-00631-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-020-00631-3

Keywords

Navigation