Skip to main content
Log in

Spatial variability of nutrients in soils and plants of forest ecosystems located near the highway

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The variability of selected biogenic elements in soils and leaves of three dominant plant species was studied in segments of Querci-Fageta typica and Fagi-Querceta typica forest ecosystems located near R1 Pribina highway in SW Slovakia. The amounts of nutrients (Mg, K, Na and Zn) in soils distant 30 m from the highway were mostly low and increased significantly with a depth of soil. On the other hand, the highest Ca concentrations were found in the surface humus horizons and decreased significantly with soil depth. The Mg, K and Zn contents found in soil mineral horizons 8000 m from the highway were more balanced than those found at 30 m from the highway. The nutrient content of plant leaves was mostly significantly higher at a distance of 30 m from the highway than 8000 m from the highway, for Ca (Prunus spinosa, Melica uniflora), Mg (P. spinosa), Na (Quercus cerris, P. spinosa) and Zn (Q. cerris, M. uniflora). The tightness of the relationships between nutrient contents in leaves and the distance from the highway was the highest for Ca (P. spinosa, M. uniflora), Mg, Na, Zn (Q. cerris, P. spinosa) and K (M. uniflora). The K/(Mg + Ca) ratios in Q. cerris and P. spinosa leaves distant 8000 m from the highway were more balanced than those found at 30 m from the highway. This markedly points to favourable biological activity and better stability of the more distant control ecosystem with lower level of pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abrahamson, G. W., & Caswell, H. (1982). On the Comparative allocations of biomass, energy, and nutrients in plants. Ecology, 63(4), 982–991. 

  • Act of the National Council of the Slovak Republic No. 220/2004. (2004). Act on protection and agricultural land use. Annex 2, part 96, Ministry for Land Management, Bratislava.

  • Alloway, B. J. (2008). Zinc in soils and crop nutrition (2nd ed.). Brussels: IZA and IFA.

    Google Scholar 

  • Ardahanlioglu, O., Oztas, T., Evren, S., Yilmaz, H., & Yildirim, Z. N. (2003). Spatial variability of exchangeable sodium, electrical conductivity, soil pH and boron content in salt- and sodium-affected areas of the Igdir plain (Turkey). Journal of Arid Environments, 54(3), 495–503. https://doi.org/10.1006/jare.2002.1073.

    Article  Google Scholar 

  • Bohemen, H. D., & Janssen van de Laak, W. H. (2003). The influence of road infrastructure and traffic on soil, water, and air quality. Environmental Management, 31(1), 50–68. https://doi.org/10.1007/s00267-002-2802-8.

    Article  Google Scholar 

  • Brodowska, M. S., & Kaczor, A. (2009). The effect of various forms of sulphur and nitrogen on calcium and magnesium content and uptake in spring wheat (Triticum aestivum L.) and cocksfoot (Dactylis glomerata L.). Journal of Elementology, 14(4), 641–647.

    Google Scholar 

  • Campbell, B. D., Grime, J. P., & Mackey, J. M. L. (1991). A trade–off between scale and precision in resource foraging. Oecologia, 87, 532–538. https://doi.org/10.1007/BF00320417.

    Article  CAS  Google Scholar 

  • Ciećko, Z., Kalembasa, S., Wyszkowski, M., & Rolka, E. (2005). The magnesium content in plants on soil contaminated with cadmium. Polish Journal of Environmental Studies, 14(3), 365–370.

    Google Scholar 

  • Čurlík, J., Šefčík, P. (1999). Geochemical atlas of the Slovak Republic. Soils. Bratislava: MŽP SR.

  • Djingova, R., Kuleff, I., & Markert, B. (2004). Chemical fingerprinting of plants. Ecological Research, 19, 3–11. https://doi.org/10.1111/j.1440-1703.2003.00602.x.

    Article  CAS  Google Scholar 

  • Fazekašová, D., Barančíková, G., Torma, S., Ivanová, M., & Manko, P. (2014). Chemical and environmental aspects of the components of the environment and landscape (in Slovak). Prešov: University of Prešov, Faculty of Management.

  • Grzegorczyk, S., Alberski, J., & Olszewska, M. (2013). Accumulation of potassium, calcium and magnesium by selected species of grassland legumes and herbs. Journal of Elementology, 18, 69–78. https://doi.org/10.5601/jelem.2013.18.1.05.

    Article  Google Scholar 

  • Guo, W., Nazim, H., Liang, Z., & Yang, D. (2016). Magnesium deficiency in plants: an urgent problem. The Crop Journal, 4(2), 3–91. https://doi.org/10.1016/j.cj.2015.11.003.

    Article  CAS  Google Scholar 

  • Hagen-Thorn, A., Varnagiryte, I., Nihlgard, B., & Armolaitis, K. (2004). Autumn nutrient resorption and losses in four deciduous forest tree species. Forest Ecology and Management, 228(1–3), 33–39. https://doi.org/10.1016/j.foreco.2006.02.021.

    Article  Google Scholar 

  • Hellsten, S., Helmisaari, H., Melin, Y., Skovsgaard, J. P., Kaakinen, S., Kukkola, M., Saarsalmi, A., Petersson, H., & Akselsson, C. (2013). Nutrient concentrations in stumps and coarse roots of Norway spruce, Scots pine and silver birch in Sweden, Finland and Denmark. Forest Ecology and Management, 290, 40–48. https://doi.org/10.1016/j.foreco.2012.09.017.

    Article  Google Scholar 

  • Hu, Y., & Schmidhalter, U. (2005). Drought and salinity: a comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science, 168, 541–549. https://doi.org/10.1002/jpln.200420516.

    Article  CAS  Google Scholar 

  • Ishtiaq, S., Mahmood, S., & Athar, M. (2014). Alteration of macronutrients, metal translocation and bioaccumulation as potential indicators of nickel tolerance in three Vigna species. Advances in Environmental Research, 3(1), 71–86. https://doi.org/10.12989/AER.2014.3.1.071.

    Article  Google Scholar 

  • Kosiorek, M., & Wyszkowski, M. (2019). Content of macronutrients in oat (Avena sativa L.) after remediation of soil polluted with cobalt. Environmental Monitoring and Assessment, 191(6), 389. https://doi.org/10.1007/s10661-019-7529-6.

    Article  CAS  Google Scholar 

  • Kuchenbuch, R., Claassen, N., & Jungk, A. (1986). Potassium availability in relation to soil moisture. Plant and Soil, 95, 233–243. https://doi.org/10.1007/BF02375074.

    Article  CAS  Google Scholar 

  • Kuklová, M., Hniličková, H., Kukla, J., & Hnilička, F. (2015). Environmental impact of the Al smelter on physiology and macronutrient contents in plants and Cambisols. Plant, Soil and Environment, 61, 72–78. https://doi.org/10.17221/881/2014-PSE.

    Article  CAS  Google Scholar 

  • Ligęza, S., & Smal, H. (2003). Accumulation of nutrients in soils affected by perennial colonies of piscivorous birds with reference to biogeochemical cycles of elements. Chemosphere, 52(3), 595–602. https://doi.org/10.1016/S0045-6535(03)00241-8.

    Article  CAS  Google Scholar 

  • Majkowska-Gadomska, J., Wierzbicka, B., & Dziedzic, A. (2014). The effect of seedling planting time on macroelement and microelement concentrations in basil (Ocimum basilicum L.) leaves. Polish Journal of Environmental Studies, 23(1), 25–129.

    Google Scholar 

  • Malle, K. G. (1992). Zink in der Umwelt. Acta Hydrochimica et Hydrobiologica, 20, 196–204.

    Article  CAS  Google Scholar 

  • Maňkovská, B., Godzik, B., Badea, O., Shparyk, Y., & Moravcík, P. (2004). Chemical and morphological characteristics of key tree species of the Carpathian Mountains. Environmental Pollution, 130(1), 41–54.

    Article  CAS  Google Scholar 

  • Markert, B. (1992). Presence and significance of naturally occurring chemical elements of the periodic system in the plant organism and consequences for future investigations on inorganic environmental chemistry in ecosystems. Vegetatio, 103, 1–30. https://doi.org/10.1007/BF00033413.

    Article  Google Scholar 

  • Marschner, H., Kirkby, E. A., & Cakmak, I. (1996). Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. Journal of Experimental Botany, 47, 1255–1263. https://doi.org/10.1093/jxb/47.Special_Issue.1255.

    Article  CAS  Google Scholar 

  • Modrzewska, B., & Wyszkowski, M. (2014). Trace metal content in soils along State Road 51 (northeastern Poland). Environmental Monitoring and Assessment, 186(4), 2589–2597. https://doi.org/10.1007/s10661-013-3562-z.

    Article  CAS  Google Scholar 

  • Modrzewska, B., Kosiorek, M., & Wyszkowski, M. (2016). Content of some nutrients in Scots pine, silver birch and Norway maple in an urbanized environment. Journal of Elementology, 21(1), 149–157. https://doi.org/10.5601/jelem.2015.20.2.845.

    Article  Google Scholar 

  • Mousavi, S. R. (2011). Zinc in crop production and interaction with phosphorus. Australian Journal of Basic and Applied Sciences, 5(9), 1503–1509.

    CAS  Google Scholar 

  • Nouri, J., Alloway, B. J., & Peterson, P. J. (2001). Forms of heavy metals in sewage sludge and soil amended with sludge. Pakistan Journal of Biological Sciences, 4(12), 1460–1465. https://doi.org/10.3923/pjbs.2001.1460.1465.

    Article  Google Scholar 

  • Nouri, J., Khorasani, N., Lorestani, B., Karami, M., Hassani, H. N., & Yousefi, N. (2009). Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environmental Earth Sciences, 59, 315–323. https://doi.org/10.1007/s12665-009-0028-2.

    Article  CAS  Google Scholar 

  • Robinson, D. (1994). The responses of plants to non–uniform supplies of nutrients. New Phytologist, 127, 635–674. https://doi.org/10.1111/j.1469-8137.1994.tb02969.x.

    Article  CAS  Google Scholar 

  • Roje, V., Orešković, M., Rončević, J., Bakšić, D., Pernar, N., & Perković, I. (2018). Assessment of the trace element distribution in soils in the parks of the city of Zagreb (Croatia). Environmental Monitoring and Assessment, 190(121). https://doi.org/10.1007/s10661-018-6487-8.

  • Simon, E., Braun, M., Vidic, A., Bogyó, D., Fábián, I., & Tóthmérész, B. (2011). Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna. Environmental Pollution, 159(5), 1229–1233. https://doi.org/10.1016/j.envpol.2011.01.034.

    Article  CAS  Google Scholar 

  • Thunqvist, E. I. (2004). Regional increase of mean chloride concentration in water due to the application of deicing salt. Science of the Total Environment, 325(1–3), 29–37. https://doi.org/10.1016/j.scitotenv.2003.11.020.

    Article  CAS  Google Scholar 

  • Vrana, K., Rapant, S., Bodiš, D., Marsina, K., Maňkovská, B., Čurlík, J., Šefčík, P., Daniel, J., Lučivjanský, L., Lexa, J., & Pramuka, S. (1997). Geochemical Atlas of the Slovak Republic at a scale of 1:1,000,000. Journal of Geochemical Exploration, 60(1), 7–37. https://doi.org/10.1016/S0375-6742(97)00023-X.

    Article  Google Scholar 

  • Wang, Z. Y., Kelly, J. M., & Kovar, J. L. (2007). Depletion of macro-nutrients from rhizosphere soil solution by juvenile corn, cottonwood, and switchgrass plants. Plant and Soil, 291, 335–336. https://doi.org/10.1007/s11104-007-9210-z.

    Article  CAS  Google Scholar 

  • WRB (World Reference Base for Soil Resources). (2015). International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Rome: FAO.

  • Yang, J. E., Lee, W. Y., Ok, Y. S., & Skousen, J. (2009). Soil nutrient bioavailability and nutrient content of pine trees (Pinus thunbergii) in areas impacted by acid deposition in Kore. Environmental Monitoring and Assessment, 157(1–4), 43–50. https://doi.org/10.1007/s10661-008-0513-1.

    Article  CAS  Google Scholar 

  • Zlatník, A. (1976). Overview of groups of types of geobiocoenes originally forest and shrubby in the Czechoslovak Socialist Republic (preliminary report). Brno: Zprávy Geogr. ústavu ČSAV, 13, 55–64 (in Czech).

Download references

Funding

This work was supported by Scientific Grant Agency of the Ministry of Education of Slovak Republic and the Slovak Academy of Sciences (grant no. 2/0005/17, 2/0120/17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margita Kuklová.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuklová, M., Kukla, J., Hniličková, H. et al. Spatial variability of nutrients in soils and plants of forest ecosystems located near the highway. Environ Monit Assess 192, 534 (2020). https://doi.org/10.1007/s10661-020-08481-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08481-1

Keywords

Navigation