Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 18, 2020

The role of exosome lipids in central nervous system diseases

  • Ge Wang , Yong Wang , Ningyuan Liu and Mujun Liu ORCID logo EMAIL logo

Abstract

Central nervous system (CNS) diseases are common diseases that threaten human health. The CNS is highly enriched in lipids, which play important roles in maintaining normal physiological functions of the nervous system. Moreover, many CNS diseases are closely associated with abnormal lipid metabolism. Exosomes are a subtype of extracellular vesicles (EVs) secreted from multivesicular bodies (MVBs) . Through novel forms of intercellular communication, exosomes secreted by brain cells can mediate inter-neuronal signaling and play important roles in the pathogenesis of CNS diseases. Lipids are essential components of exosomes, with cholesterol and sphingolipid as representative constituents of its bilayer membrane. In the CNS, lipids are closely related to the formation and function of exosomes. Their dysregulation causes abnormalities in exosomes, which may, in turn, lead to dysfunctions in inter-neuronal communication and promote diseases. Therefore, the role of lipids in the treatment of neurological diseases through exosomes has received increasing attention. The aim of this review is to discuss the relationship between lipids and exosomes and their roles in CNS diseases.


Corresponding author: Mujun Liu, Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China, E-mail:
Ge Wang and Yong Wang: These authors contributed equally to this article.

Funding source: Central South University

Award Identifier / Grant number: 160020020, China

Award Identifier / Grant number: GS201910533249, ZY20181004

Acknowledgments

This study is supported by research funds from Graduate Education Reform Program of Central South University (160020020) and National College Students Innovation and Entrepreneurship Training Program of Central South University (GS201910533249 and ZY20181004).

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare that they have no competing interests.

References

Aeffner, S., Reusch, T., Weinhausen, B., and Salditt, T. (2012). Energetics of stalk intermediates in membrane fusion are controlled by lipid composition. Proc. Natl. Acad. Sci. U. S. A. 109: E1609–1618, https://doi.org/10.1073/pnas.1119442109.Search in Google Scholar

Alvarez-Erviti, L., Seow, Y., Schapira, A.H., Gardiner, C., Sargent, I.L., Wood, M.J.A., and Cooper, J.M. (2011). Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol. Dis. 42: 360–367, https://doi.org/10.1016/j.nbd.2011.01.029.Search in Google Scholar

An, Q., van Bel, A.J., and Hückelhoven, R. (2007). Do plant cells secrete exosomes derived from multivesicular bodies?. Plant Signal Behav. 2: 4–7, https://doi.org/10.4161/psb.2.1.3596.Search in Google Scholar

Asai, H., Ikezu, S., Tsunoda, S., Medalla, M., Luebke, J., Haydar, T., Wolozin, B., Butovsky, O., Kügler, S., and Ikezu, T. (2015). Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci. 18: 1584–1593, https://doi.org/10.1038/nn.4132.Search in Google Scholar

Ashley, J., Cordy, B., Lucia, D., Fradkin, L.G., Budnik, V., and Thomson, T. (2018). Retrovirus-like gag protein Arc1 binds RNA and traffics across synaptic boutons. Cell 172: 262–274.e211, https://doi.org/10.1016/j.cell.2017.12.022.Search in Google Scholar

Badawy, S.M.M., Okada, T., Kajimoto, T., Hirase, M., Matovelo, S.A., Nakamura, S., Yoshida, D., Ijuin, T., and Nakamura, S.I. (2018). Extracellular α-synuclein drives sphingosine 1-phosphate receptor subtype 1 out of lipid rafts, leading to impaired inhibitory G-protein signaling. J. Biol. Chem. 293: 8208–8216, https://doi.org/10.1074/jbc.ra118.001986.Search in Google Scholar

Barbero-Camps, E., Roca-Agujetas, V., Bartolessis, I., de Dios, C., Fernández-Checa, J.C., Marí, M., Morales, A., Hartmann, T., and Colell, A. (2018). Cholesterol impairs autophagy-mediated clearance of amyloid beta while promoting its secretion. Autophagy 14: 1129–1154, https://doi.org/10.1080/15548627.2018.1438807.Search in Google Scholar

Blackwood, R.A., Smolen, J.E., Transue, A., Hessler, R.J., Harsh, D.M., Brower, R.C., and French, S. (1997). Phospholipase D activity facilitates Ca2+-induced aggregation and fusion of complex liposomes. Am. J. Physiol. 272: C1279–C1285, https://doi.org/10.1152/ajpcell.1997.272.4.c1279.Search in Google Scholar

Braverman, N.E. and Moser, A.B. (2012). Functions of plasmalogen lipids in health and disease. Biochim. Biophys. Acta 1822: 1442–1452, https://doi.org/10.1016/j.bbadis.2012.05.008.Search in Google Scholar

Breiden, B. and Sandhoff, K. (2019). Lysosomal glycosphingolipid storage diseases. Annu. Rev. Biochem. 88: 461–485, https://doi.org/10.1146/annurev-biochem-013118-111518.Search in Google Scholar

Bruckner, R.J., Mansy, S.S., Ricardo, A., Mahadevan, L., and Szostak, J.W. (2009). Flip-flop-induced relaxation of bending energy: implications for membrane remodeling. Biophys. J. 97: 3113–3122, https://doi.org/10.1016/j.bpj.2009.09.025.Search in Google Scholar

Caby, M.-P., Lankar, D., Vincendeau-Scherrer, C., Raposo, G., and Bonnerot, C. (2005). Exosomal-like vesicles are present in human blood plasma. Int. Immunol. 17: 879–887, https://doi.org/10.1093/intimm/dxh267.Search in Google Scholar

Callaghan, B.C., O’Brien, P.D., Hinder, L.M., and Feldman, E.L. (2017). Obesity and the nervous system: more questions – Authors’ reply. Lancet Neurol. 16: 774, https://doi.org/10.1016/s1474-4422(17)30293-4.Search in Google Scholar

Chen, H., Yang, J., Low, P.S., and Cheng, J.-X. (2008). Cholesterol level regulates endosome motility via Rab proteins. Biophys. J. 94: 1508–1520, https://doi.org/10.1529/biophysj.106.099366.Search in Google Scholar

Chen, F.W., Li, C., and Ioannou, Y.A. (2010). Cyclodextrin induces calcium-dependent lysosomal exocytosis. PLoS ONE 5: e15054, https://doi.org/10.1371/journal.pone.0015054.Search in Google Scholar

Chevallier, J., Chamoun, Z., Jiang, G., Prestwich, G., Sakai, N., Matile, S., Parton, R.G., and Gruenberg, J. (2008). Lysobisphosphatidic acid controls endosomal cholesterol levels. J. Biol. Chem. 283: 27871–27880, https://doi.org/10.1074/jbc.m801463200.Search in Google Scholar

Choi, D., Montermini, L., Kim, D.K., Meehan, B., Roth, F.P., and Rak, J. (2018). The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. Mol. Cell. Proteomics 17: 1948–1964, https://doi.org/10.1074/mcp.ra118.000644.Search in Google Scholar

Choo-Smith, L.P., Garzon-Rodriguez, W., Glabe, C.G., and Surewicz, W.K. (1997). Acceleration of amyloid fibril formation by specific binding of Abeta-(1-40) peptide to ganglioside-containing membrane vesicles. J. Biol. Chem. 272: 22987–22990, https://doi.org/10.1074/jbc.272.37.22987.Search in Google Scholar

Del Conde, I., Shrimpton, C.N., Thiagarajan, P., and López, J.A. (2005). Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 106: 1604–1611, https://doi.org/10.1182/blood-2004-03-1095.Search in Google Scholar

Demais, V., Barthélémy, A., Perraut, M., Ungerer, N., Keime, C., Reibel, S., and Pfrieger, F.W. (2016). Reversal of pathologic lipid accumulation in NPC1-deficient neurons by drug-promoted release of LAMP1-coated lamellar inclusions. J. Neurosci. 36: 8012–8025, https://doi.org/10.1523/jneurosci.0900-16.2016.Search in Google Scholar

Deng, Z., Mu, J., Tseng, M., Wattenberg, B., Zhuang, X., Egilmez, N.K., Wang, Q., Zhang, L., Norris, J., Guo, H., et al. (2015). Enterobacteria-secreted particles induce production of exosome-like S1P-containing particles by intestinal epithelium to drive Th17-mediated tumorigenesis. Nat. Commun. 6: 6956, https://doi.org/10.1038/ncomms7956.Search in Google Scholar

Dinkins, M.B., Dasgupta, S., Wang, G., Zhu, G., and Bieberich, E. (2014). Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol. Aging 35: 1792–1800, https://doi.org/10.1016/j.neurobiolaging.2014.02.012.Search in Google Scholar

Dinkins, M.B., Enasko, J., Hernandez, C., Wang, G., Kong, J., Helwa, I., Liu, Y., Terry, A.V., and Bieberich, E. (2016). Neutral sphingomyelinase-2 deficiency ameliorates Alzheimer’s disease pathology and improves cognition in the 5XFAD mouse. J. Neurosci. 36: 8653–8667, https://doi.org/10.1523/jneurosci.1429-16.2016.Search in Google Scholar

Egea-Jimenez, A.L. and Zimmermann, P. (2018). Phospholipase D and phosphatidic acid in the biogenesis and cargo loading of extracellular vesicles. J. Lipid Res. 59: 1554–1560, https://doi.org/10.1194/jlr.r083964.Search in Google Scholar

Ermini, L., Ausman, J., Melland-Smith, M., Yeganeh, B., Rolfo, A., Litvack, M.L., Todros, T., Letarte, M., Post, M., and Caniggia, I. (2017). A single sphingomyelin species promotes exosomal release of endoglin into the maternal circulation in preeclampsia. Sci. Rep. 7: 12172, https://doi.org/10.1038/s41598-017-12491-4.Search in Google Scholar

Faille, D., El-Assaad, F., Mitchell, A.J., Alessi, M.-C., Chimini, G., Fusai, T., Grau, G.E., and Combes, V. (2012). Endocytosis and intracellular processing of platelet microparticles by brain endothelial cells. J. Cell. Mol. Med. 16: 1731–1738, https://doi.org/10.1111/j.1582-4934.2011.01434.x.Search in Google Scholar

Falguières, T., Luyet, P.-P., Bissig, C., Scott, C.C., Velluz, M.-C., and Gruenberg, J. (2008). In vitro budding of intralumenal vesicles into late endosomes is regulated by Alix and Tsg101. Mol. Biol. Cell 19: 4942–4955, https://doi.org/10.1091/mbc.e08-03-0239.Search in Google Scholar

Falker, C., Hartmann, A., Guett, I., Dohler, F., Altmeppen, H., Betzel, C., Schubert, R., Thurm, D., Wegwitz, F., Joshi, P., et al. (2016). Exosomal cellular prion protein drives fibrillization of amyloid beta and counteracts amyloid beta-mediated neurotoxicity. J. Neurochem. 137: 88–100, https://doi.org/10.1111/jnc.13514.Search in Google Scholar

Feng, D., Zhao, W.L., Ye, Y.Y., Bai, X.C., Liu, R.Q., Chang, L.F., Zhou, Q., and Sui, S.F. (2010). Cellular internalization of exosomes occurs through phagocytosis. Traffic (Copenhagen, Denmark) 11: 675–687, https://doi.org/10.1111/j.1600-0854.2010.01041.x.Search in Google Scholar

Fitzner, D., Schnaars, M., van Rossum, D., Krishnamoorthy, G., Dibaj, P., Bakhti, M., Regen, T., Hanisch, U.-K., and Simons, M. (2011). Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J. Cell Sci. 124: 447–458, https://doi.org/10.1242/jcs.074088.Search in Google Scholar

Fomina, A.F., Deerinck, T.J., Ellisman, M.H., and Cahalan, M.D. (2003). Regulation of membrane trafficking and subcellular organization of endocytic compartments revealed with FM1-43 in resting and activated human T cells. Exp. Cell Res. 291: 150–166, https://doi.org/10.1016/s0014-4827(03)00372-0.Search in Google Scholar

Frühbeis, C., Fröhlich, D., Kuo, W.P., and Krämer-Albers, E.-M. (2013). Extracellular vesicles as mediators of neuron-glia communication. Front. Cell Neurosci. 7: 182, https://doi.org/10.3389/fncel.2013.00182.Search in Google Scholar

Galvagnion, C., Buell, A.K., Meisl, G., Michaels, T.C., Vendruscolo, M., Knowles, T.P., and Dobson, C.M. (2015). Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation. Nat. Chem. Biol. 11: 229–234, https://doi.org/10.1038/nchembio.1750.Search in Google Scholar

Giovannone, A.J., Reales, E., Bhattaram, P., Fraile-Ramos, A., and Weimbs, T. (2017). Monoubiquitination of syntaxin 3 leads to retrieval from the basolateral plasma membrane and facilitates cargo recruitment to exosomes. Mol. Biol. Cell 28: 2843–2853, https://doi.org/10.1091/mbc.e17-07-0461.Search in Google Scholar

Grey, M., Dunning, C.J., Gaspar, R., Grey, C., Brundin, P., Sparr, E., and Linse, S. (2015). Acceleration of α-synuclein aggregation by exosomes. J. Biol. Chem. 290: 2969–2982, https://doi.org/10.1074/jbc.m114.585703.Search in Google Scholar

Grozdanov, V., Bousset, L., Hoffmeister, M., Bliederhaeuser, C., Meier, C., Madiona, K., Pieri, L., Kiechle, M., McLean, P.J., Kassubek, J., et al. (2019). Increased immune activation by pathologic α-synuclein in Parkinson’s disease. Ann. Neurol. 86: 593–606, https://doi.org/10.1002/ana.25557.Search in Google Scholar

He, M., Qin, H., Poon, T.C.W., Sze, S.-C., Ding, X., Co, N.N., Ngai, S.-M., Chan, T.-F., and Wong, N. (2015). Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs. Carcinogenesis 36: 1008–1018, https://doi.org/10.1093/carcin/bgv081.Search in Google Scholar

Henriques, A., Croixmarie, V., Priestman, D.A., Rosenbohm, A., Dirrig-Grosch, S., D’Ambra, E., Huebecker, M., Hussain, G., Boursier-Neyret, C., Echaniz-Laguna, A., et al. (2015). Amyotrophic lateral sclerosis and denervation alter sphingolipids and up-regulate glucosylceramide synthase. Hum. Mol. Genet. 24: 7390–7405, https://doi.org/10.1093/hmg/ddv439.Search in Google Scholar

Henriques, A., Croixmarie, V., Bouscary, A., Mosbach, A., Keime, C., Boursier-Neyret, C., Walter, B., Spedding, M., and Loeffler, J.P. (2017). Sphingolipid metabolism is dysregulated at transcriptomic and metabolic levels in the spinal cord of an animal model of amyotrophic lateral sclerosis. Front. Mol. Neurosci. 10: 433, https://doi.org/10.3389/fnmol.2017.00433.Search in Google Scholar

Hira, K., Ueno, Y., Tanaka, R., Miyamoto, N., Yamashiro, K., Inaba, T., Urabe, T., Okano, H., and Hattori, N. (2018). Astrocyte-derived exosomes treated with a semaphorin 3A inhibitor enhance stroke recovery via prostaglandin D synthase. Stroke 49: 2483–2494, https://doi.org/10.1161/strokeaha.118.021272.Search in Google Scholar

Huotari, J. and Helenius, A. (2011). Endosome maturation. EMBO J. 30: 3481–3500, https://doi.org/10.1038/emboj.2011.286.Search in Google Scholar

Iguchi, Y., Eid, L., Parent, M., Soucy, G., Bareil, C., Riku, Y., Kawai, K., Takagi, S., Yoshida, M., Katsuno, M., et al. (2016). Exosome secretion is a key pathway for clearance of pathological TDP-43. Brain 139: 3187–3201, https://doi.org/10.1093/brain/aww237.Search in Google Scholar

Jarsch, I.K., Daste, F., and Gallop, J.L. (2016). Membrane curvature in cell biology: an integration of molecular mechanisms. J. Cell Biol. 214: 375–387, https://doi.org/10.1083/jcb.201604003.Search in Google Scholar

Joshi, P., Turola, E., Ruiz, A., Bergami, A., Libera, D.D., Benussi, L., Giussani, P., Magnani, G., Comi, G., Legname, G., et al. (2014). Microglia convert aggregated amyloid-β into neurotoxic forms through the shedding of microvesicles. Cell Death Differ. 21: 582–593, https://doi.org/10.1038/cdd.2013.180.Search in Google Scholar

Ju, S., Mu, J., Dokland, T., Zhuang, X., Wang, Q., Jiang, H., Xiang, X., Deng, Z.-B., Wang, B., Zhang, L., et al. (2013). Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol. Ther. 21: 1345–1357, https://doi.org/10.1038/mt.2013.64.Search in Google Scholar

Kajimoto, T., Okada, T., Miya, S., Zhang, L., and Nakamura, S.-I. (2013). Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nat. Commun. 4: 2712, https://doi.org/10.1038/ncomms3712.Search in Google Scholar

Kajimoto, T., Mohamed, N.N.I., Badawy, S.M.M., Matovelo, S.A., Hirase, M., Nakamura, S., Yoshida, D., Okada, T., Ijuin, T., and Nakamura, S.I. (2018). Involvement of Gβγ subunits of G protein coupled with S1P receptor on multivesicular endosomes in F-actin formation and cargo sorting into exosomes. J. Biol. Chem. 293: 245–253, https://doi.org/10.1074/jbc.m117.808733.Search in Google Scholar

Kawahara, H. and Hanayama, R. (2018). The role of exosomes/extracellular vesicles in neural signal transduction. Biol. Pharm. Bull. 41: 1119–1125, https://doi.org/10.1248/bpb.b18-00167.Search in Google Scholar

Kerr, M.C., and Teasdale, R.D. (2009). Defining macropinocytosis. Traffic (Copenhagen, Denmark) 10: 364–371, https://doi.org/10.1111/j.1600-0854.2009.00878.x.Search in Google Scholar

Kirkegaard, T., Roth, A.G., Petersen, N.H.T., Mahalka, A.K., Olsen, O.D., Moilanen, I., Zylicz, A., Knudsen, J., Sandhoff, K., Arenz, C., et al. (2010). Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology. Nature 463: 549–553, https://doi.org/10.1038/nature08710.Search in Google Scholar

Kobayashi, T., Beuchat, M.-H., Chevallier, J., Makino, A., Mayran, N., Escola, J.-M., Lebrand, C., Cosson, P., Kobayashi, T., and Gruenberg, J. (2002). Separation and characterization of late endosomal membrane domains. J. Biol. Chem. 277: 32157–32164, https://doi.org/10.1074/jbc.m202838200.Search in Google Scholar

Kou, X., Xu, X., Chen, C., Sanmillan, M.L., Cai, T., Zhou, Y., Giraudo, C., Le, A., and Shi, S. (2018). The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing. Sci. Transl. Med. 10, https://doi.org/10.1126/scitranslmed.aai8524.Search in Google Scholar

Kowal, J., Tkach, M., and Théry, C. (2014). Biogenesis and secretion of exosomes. Curr. Opin. Cell Biol. 29: 116–125, https://doi.org/10.1016/j.ceb.2014.05.004.Search in Google Scholar

Krämer-Albers, E.-M., Bretz, N., Tenzer, S., Winterstein, C., Möbius, W., Berger, H., Nave, K.-A., Schild, H., and Trotter, J. (2007). Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons? Proteomics Clin. Appl. 1: 1446–1461, https://doi.org/10.1002/prca.200700522.Search in Google Scholar

Lakkaraju, A. and Rodriguez-Boulan, E. (2008). Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol. 18: 199–209, https://doi.org/10.1016/j.tcb.2008.03.002.Search in Google Scholar

Lalier, L., Cartron, P.F., Pedelaborde, F., Olivier, C., Loussouarn, D., Martin, S.A., Meflah, K., Menanteau, J., and Vallette, F.M. (2007). Increase in PGE2 biosynthesis induces a Bax dependent apoptosis correlated to patients’ survival in glioblastoma multiforme. Oncogene 26: 4999–5009, https://doi.org/10.1038/sj.onc.1210303.Search in Google Scholar

Laulagnier, K., Grand, D., Dujardin, A., Hamdi, S., Vincent-Schneider, H., Lankar, D., Salles, J.-P., Bonnerot, C., Perret, B., and Record, M. (2004a). PLD2 is enriched on exosomes and its activity is correlated to the release of exosomes. FEBS Lett. 572: 11–14, https://doi.org/10.1016/j.febslet.2004.06.082.Search in Google Scholar

Laulagnier, K., Motta, C., Hamdi, S., Roy, S., Fauvelle, F., Pageaux, J.-F., Kobayashi, T., Salles, J.-P., Perret, B., Bonnerot, C., et al. (2004b). Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem. J. 380: 161–171, https://doi.org/10.1042/bj20031594.Search in Google Scholar

Lauwers, E., Goodchild, R., and Verstreken, P. (2016). Membrane lipids in presynaptic function and disease. Neuron 90: 11–25, https://doi.org/10.1016/j.neuron.2016.02.033.Search in Google Scholar

Lazar, A.N., Bich, C., Panchal, M., Desbenoit, N., Petit, V.W., Touboul, D., Dauphinot, L., Marquer, C., Laprévote, O., Brunelle, A., et al. (2013). Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients. Acta Neuropathol. 125: 133–144, https://doi.org/10.1007/s00401-012-1041-1.Search in Google Scholar

Lepore, D.M., Martínez-Núñez, L., and Munson, M. (2018). Exposing the elusive exocyst structure. Trends Biochem. Sci. 43: 714–725, https://doi.org/10.1016/j.tibs.2018.06.012.Search in Google Scholar

Liang, B., Peng, P., Chen, S., Li, L., Zhang, M., Cao, D., Yang, J., Li, H., Gui, T., Li, X., et al. (2013). Characterization and proteomic analysis of ovarian cancer-derived exosomes. J. Proteomics 80: 171–182, https://doi.org/10.1016/j.jprot.2012.12.029.Search in Google Scholar

Lydic, T.A., Townsend, S., Adda, C.G., Collins, C., Mathivanan, S., and Reid, G.E. (2015). Rapid and comprehensive ’shotgun’ lipidome profiling of colorectal cancer cell derived exosomes. Methods (San Diego, Calif.) 87: 83–95, https://doi.org/10.1016/j.ymeth.2015.04.014.Search in Google Scholar

Makdissy, N., Haddad, K., AlBacha, J.D., Chaker, D., Ismail, B., Azar, A., Oreibi, G., Ayoub, D., Achkar, I., Quilliot, D., et al. (2018). Essential role of ATP6AP2 enrichment in caveolae/lipid raft microdomains for the induction of neuronal differentiation of stem cells. Stem Cell Res. Ther. 9: 132, https://doi.org/10.1186/s13287-018-0862-9.Search in Google Scholar

Marfia, G., Campanella, R., Navone, S.E., Di Vito, C., Riccitelli, E., Hadi, L.A., Bornati, A., de Rezende, G., Giussani, P., Tringali, C., et al. (2014). Autocrine/paracrine sphingosine-1-phosphate fuels proliferative and stemness qualities of glioblastoma stem cells. Glia 62: 1968–1981, https://doi.org/10.1002/glia.22718.Search in Google Scholar

Mathieu, M., Martin-Jaular, L., Lavieu, G., and Théry, C. (2019). Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 21: 9–17, https://doi.org/10.1038/s41556-018-0250-9.Search in Google Scholar

Matsuo, H., Chevallier, J., Mayran, N., Le Blanc, I., Ferguson, C., Fauré, J., Blanc, N.S., Matile, S., Dubochet, J., Sadoul, R., et al. (2004). Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science 303: 531–534, https://doi.org/10.1126/science.1092425.Search in Google Scholar

Men, Y., Yelick, J., Jin, S., Tian, Y., Chiang, M.S.R., Higashimori, H., Brown, E., Jarvis, R., and Yang, Y. (2019). Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS. Nat. Commun. 10: 4136, https://doi.org/10.1038/s41467-019-11534-w.Search in Google Scholar

Menck, K., Sönmezer, C., Worst, T.S., Schulz, M., Dihazi, G.H., Streit, F., Erdmann, G., Kling, S., Boutros, M., Binder, C., et al. (2017). Neutral sphingomyelinases control extracellular vesicles budding from the plasma membrane. J. Extracell. Vesicles 6: 1378056, https://doi.org/10.1080/20013078.2017.1378056.Search in Google Scholar

Minakaki, G., Menges, S., Kittel, A., Emmanouilidou, E., Schaeffner, I., Barkovits, K., Bergmann, A., Rockenstein, E., Adame, A., Marxreiter, F., et al. (2018). Autophagy inhibition promotes SNCA/alpha-synuclein release and transfer via extracellular vesicles with a hybrid autophagosome-exosome-like phenotype. Autophagy 14: 98–119, https://doi.org/10.1080/15548627.2017.1395992.Search in Google Scholar

Miranda, A.M., Lasiecka, Z.M., Xu, Y., Neufeld, J., Shahriar, S., Simoes, S., Chan, R.B., Oliveira, T.G., Small, S.A., and Di Paolo, G. (2018). Neuronal lysosomal dysfunction releases exosomes harboring APP C-terminal fragments and unique lipid signatures. Nat. Commun. 9: 291, https://doi.org/10.1038/s41467-017-02533-w.Search in Google Scholar

Mizuno, T., Nakata, M., Naiki, H., Michikawa, M., Wang, R., Haass, C., and Yanagisawa, K. (1999). Cholesterol-dependent generation of a seeding amyloid beta-protein in cell culture. J. Biol. Chem. 274: 15110–15114, https://doi.org/10.1074/jbc.274.21.15110.Search in Google Scholar

Moreau, D., Vacca, F., Vossio, S., Scott, C., Colaco, A., Paz Montoya, J., Ferguson, C., Damme, M., Moniatte, M., Parton, R.G., et al. (2019). Drug-induced increase in lysobisphosphatidic acid reduces the cholesterol overload in Niemann-Pick type C cells and mice. EMBO Rep. 20: e47055, https://doi.org/10.15252/embr.201847055.Search in Google Scholar

Moyano, A.L., Li, G., Boullerne, A.I., Feinstein, D.L., Hartman, E., Skias, D., Balavanov, R., van Breemen, R.B., Bongarzone, E.R., Månsson, J.E., et al. (2016). Sulfatides in extracellular vesicles isolated from plasma of multiple sclerosis patients. J. Neurosci. Res. 94: 1579–1587, https://doi.org/10.1002/jnr.23899.Search in Google Scholar

Mrowczynski, O.D., Zacharia, B.E., and Connor, J.R. (2019). Exosomes and their implications in central nervous system tumor biology. Prog. Neurobiol. 172: 71–83, https://doi.org/10.1016/j.pneurobio.2018.06.006.Search in Google Scholar

Nanbo, A., Kawanishi, E., Yoshida, R., and Yoshiyama, H. (2013). Exosomes derived from Epstein-Barr virus-infected cells are internalized via caveola-dependent endocytosis and promote phenotypic modulation in target cells. J. Virol. 87: 10334–10347, https://doi.org/10.1128/jvi.01310-13.Search in Google Scholar

Nicastro, M.C., Spigolon, D., Librizzi, F., Moran, O., Ortore, M.G., Bulone, D., Biagio, P.L., and Carrotta, R. (2016). Amyloid β-peptide insertion in liposomes containing GM1-cholesterol domains. Biophys. Chem. 208: 9–16, https://doi.org/10.1016/j.bpc.2015.07.010.Search in Google Scholar

Nuriel, T., Peng, K.Y., Ashok, A., Dillman, A.A., Figueroa, H.Y., Apuzzo, J., Ambat, J., Levy, E., Cookson, M.R., Mathews, P.M., et al. (2017). The endosomal-lysosomal pathway is dysregulated by expression. Front. Neurosci. 11: 702, https://doi.org/10.3389/fnins.2017.00702.Search in Google Scholar

O’Brien, R.J. and Wong, P.C. (2011). Amyloid precursor protein processing and Alzheimer’s disease. Annual Rev. Neurosci. 34: 185–204, https://doi.org/10.1146/annurev-neuro-061010-113613.Search in Google Scholar

Oskouie, M.N., Aghili Moghaddam, N.S., Butler, A.E., Zamani, P., and Sahebkar, A. (2019). Therapeutic use of curcumin-encapsulated and curcumin-primed exosomes. J. Cell Physiol. 234: 8182–8191, https://doi.org/10.1002/jcp.27615.Search in Google Scholar

Peferoen, L., Kipp, M., van der Valk, P., van Noort, J.M., and Amor, S. (2014). Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology 141: 302–313, https://doi.org/10.1111/imm.12163.Search in Google Scholar

Peng, K.Y., Pérez-González, R., Alldred, M.J., Goulbourne, C.N., Morales-Corraliza, J., Saito, M., Saito, M., Ginsberg, S.D., Mathews, P.M., and Levy, E. (2019). Apolipoprotein E4 genotype compromises brain exosome production. Brain 142: 163–175, https://doi.org/10.1093/brain/awy289.Search in Google Scholar

Perez-Gonzalez, R., Gauthier, S.A., Kumar, A., and Levy, E. (2012). The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space. J. Biol. Chem. 287: 43108–43115, https://doi.org/10.1074/jbc.m112.404467.Search in Google Scholar

Phuyal, S., Skotland, T., Hessvik, N.P., Simolin, H., Øverbye, A., Brech, A., Parton, R.G., Ekroos, K., Sandvig, K., and Llorente, A. (2015). The ether lipid precursor hexadecylglycerol stimulates the release and changes the composition of exosomes derived from PC-3 cells. J. Biol. Chem. 290: 4225–4237, https://doi.org/10.1074/jbc.m114.593962.Search in Google Scholar

Pieragostino, D., Cicalini, I., Lanuti, P., Ercolino, E., di Ioia, M., Zucchelli, M., Zappacosta, R., Miscia, S., Marchisio, M., Sacchetta, P., et al. (2018). Enhanced release of acid sphingomyelinase-enriched exosomes generates a lipidomics signature in CSF of multiple sclerosis patients. Sci. Rep. 8: 3071, https://doi.org/10.1038/s41598-018-21497-5.Search in Google Scholar

Pike, L.J., Han, X., Chung, K.-N., and Gross, R.W. (2002). Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis. Biochemistry 41: 2075–2088, https://doi.org/10.1021/bi0156557.Search in Google Scholar

Pituch, K.C., Moyano, A.L., Lopez-Rosas, A., Marottoli, F.M., Li, G., Hu, C., van Breemen, R., Månsson, J.E., and Givogri, M.I. (2015). Dysfunction of platelet-derived growth factor receptor α (PDGFRα) represses the production of oligodendrocytes from arylsulfatase A-deficient multipotential neural precursor cells. J. Biol. Chem. 290: 7040–7053, https://doi.org/10.1074/jbc.m115.636498.Search in Google Scholar

Podbielska, M., Szulc, Z.M., Kurowska, E., Hogan, E.L., Bielawski, J., Bielawska, A., and Bhat, N.R. (2016). Cytokine-induced release of ceramide-enriched exosomes as a mediator of cell death signaling in an oligodendroglioma cell line. J. Lipid Res. 57: 2028–2039, https://doi.org/10.1194/jlr.m070664.Search in Google Scholar

Potolicchio, I., Carven, G.J., Xu, X., Stipp, C., Riese, R.J., Stern, L.J., and Santambrogio, L. (2005). Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J. Immunol. 175: 2237–2243, https://doi.org/10.4049/jimmunol.175.4.2237.Search in Google Scholar

Puchkov, D. and Haucke, V. (2013). Greasing the synaptic vesicle cycle by membrane lipids. Trends Cell Biol. 23: 493–503, https://doi.org/10.1016/j.tcb.2013.05.002.Search in Google Scholar

Record, M., Amara, S., Subra, C., Jiang, G., Prestwich, G.D., Ferrato, F., and Carrière, F. (2011). Bis (monoacylglycero) phosphate interfacial properties and lipolysis by pancreatic lipase-related protein 2, an enzyme present in THP-1 human monocytes. Biochim. Et. Biophys. Acta 1811: 419–430, https://doi.org/10.1016/j.bbalip.2011.04.008.Search in Google Scholar

Record, M., Poirot, M. and Silvente-Poirot, S. (2014). Emerging concepts on the role of exosomes in lipid metabolic diseases. Biochimie 96: 67–74, https://doi.org/10.1016/j.biochi.2013.06.016.Search in Google Scholar

Sackmann, V., Sinha, M.S., Sackmann, C., Civitelli, L., Bergström, J., Ansell-Schultz, A., and Hallbeck, M. (2019). Inhibition of nSMase2 reduces the transfer of oligomeric α-synuclein irrespective of hypoxia. Front. Mol. Neurosci. 12: 200, https://doi.org/10.3389/fnmol.2019.00200.Search in Google Scholar

Scesa, G., Moyano, A.L., Bongarzone, E.R., and Givogri, M.I. (2016). Port-to-port delivery: mobilization of toxic sphingolipids via extracellular vesicles. J. Neurosci. Res. 94: 1333–1340, https://doi.org/10.1002/jnr.23798.Search in Google Scholar

Sharma, R., Huang, X., Brekken, R.A., and Schroit, A.J. (2017). Detection of phosphatidylserine-positive exosomes for the diagnosis of early-stage malignancies. Br. J. Cancer 117: 545–552, https://doi.org/10.1038/bjc.2017.183.Search in Google Scholar

Sharma, P., Mesci, P., Carromeu, C., McClatchy, D.R., Schiapparelli, L., Yates, J.R., Muotri, A.R., and Cline, H.T. (2019). Exosomes regulate neurogenesis and circuit assembly. Proc. Natl. Acad. Sci. U. S. A. 116: 16086–16094, https://doi.org/10.1073/pnas.1902513116.Search in Google Scholar

Siddiqi, K.S., Husen, A., Sohrab, S.S., and Yassin, M.O. (2018). Recent status of nanomaterial fabrication and their potential applications in neurological disease management. Nanoscale Res. Lett. 13: 231, https://doi.org/10.1186/s11671-018-2638-7.Search in Google Scholar

Simons, M., Keller, P., Dichgans, J., and Schulz, J.B. (2001). Cholesterol and Alzheimer’s disease: is there a link?. Neurology 57: 1089–1093, https://doi.org/10.1212/wnl.57.6.1089.Search in Google Scholar

Sims, B., Gu, L., Krendelchtchikov, A., and Matthews, Q.L. (2014). Neural stem cell-derived exosomes mediate viral entry. Int. J. Nanomed. 9: 4893–4897, https://doi.org/10.2147/ijn.s70999.Search in Google Scholar

Sindeeva, O.A., Verkhovskii, R.A., Sarimollaoglu, M., Afanaseva, G.A., Fedonnikov, A.S., Osintsev, E.Y., Kurochkina, E.N., Gorin, D.A., Deyev, S.M., Zharov, V.P., et al. (2019). New frontiers in diagnosis and therapy of circulating tumor markers in cerebrospinal fluid in vitro and in vivo. Cells 8, https://doi.org/10.3390/cells8101195.Search in Google Scholar

Skotland, T., Sandvig, K., and Llorente, A. (2017). Lipids in exosomes: current knowledge and the way forward. Prog. Lipid Res. 66: 30-41, https://doi.org/10.1016/j.plipres.2017.03.001.Search in Google Scholar

Strauss, K., Goebel, C., Runz, H., Möbius, W., Weiss, S., Feussner, I., Simons, M., and Schneider, A. (2010). Exosome secretion ameliorates lysosomal storage of cholesterol in Niemann-Pick type C disease. J. Biol. Chem. 285: 26279–26288, https://doi.org/10.1074/jbc.m110.134775.Search in Google Scholar

Subra, C., Grand, D., Laulagnier, K., Stella, A., Lambeau, G., Paillasse, M., De Medina, P., Monsarrat, B., Perret, B., Silvente-Poirot, S., et al. (2010). Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J. Lipid Res. 51: 2105–2120, https://doi.org/10.1194/jlr.m003657.Search in Google Scholar

Svensson, K.J., Christianson, H.C., Wittrup, A., Bourseau-Guilmain, E., Lindqvist, E., Svensson, L.M., Mörgelin, M., and Belting, M. (2013). Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J. Biol. Chem. 288: 17713–17724, https://doi.org/10.1074/jbc.m112.445403.Search in Google Scholar

Tarling, E.J. and Edwards, P.A. (2011). ATP binding cassette transporter G1 (ABCG1) is an intracellular sterol transporter. Proc. Natl. Acad. Sci. U. S. A. 108: 19719–19724, https://doi.org/10.1073/pnas.1113021108.Search in Google Scholar

Toda, Y., Takata, K., Nakagawa, Y., Kawakami, H., Fujioka, S., Kobayashi, K., Hattori, Y., Kitamura, Y., Akaji, K., and Ashihara, E. (2015). Effective internalization of U251-MG-secreted exosomes into cancer cells and characterization of their lipid components. Biochem. Biophys. Res. Commun. 456: 768–773, https://doi.org/10.1016/j.bbrc.2014.12.015.Search in Google Scholar

Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., Schwille, P., Brügger, B., and Simons, M. (2008). Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319: 1244–1247, https://doi.org/10.1126/science.1153124.Search in Google Scholar

Tsutsumi, R., Hori, Y., Seki, T., Kurauchi, Y., Sato, M., Oshima, M., Hisatsune, A., and Katsuki, H. (2019). Involvement of exosomes in dopaminergic neurodegeneration by microglial activation in midbrain slice cultures. Biochem. Biophys. Res. Commun. 511: 427–433, https://doi.org/10.1016/j.bbrc.2019.02.076.Search in Google Scholar

van Niel, G., D’Angelo, G., and Raposo, G. (2018). Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19: 213–228, https://doi.org/10.1038/nrm.2017.125.Search in Google Scholar

Varma, V.R., Oommen, A.M., Varma, S., Casanova, R., An, Y., Andrews, R.M., O’Brien, R., Pletnikova, O., Troncoso, J.C., Toledo, J., et al. (2018). Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: a targeted metabolomics study. PLoS Med. 15: e1002482, https://doi.org/10.1371/journal.pmed.1002482.Search in Google Scholar

Vingtdeux, V., Hamdane, M., Loyens, A., Gelé, P., Drobeck, H., Bégard, S., Galas, M.-C., Delacourte, A., Beauvillain, J.-C., Buée, L., et al. (2007). Alkalizing drugs induce accumulation of amyloid precursor protein by-products in luminal vesicles of multivesicular bodies. J. Biol. Chem. 282: 18197–18205, https://doi.org/10.1074/jbc.m609475200.Search in Google Scholar

Voisset, C., Lavie, M., Helle, F., Op De Beeck, A., Bilheu, A., Bertrand-Michel, J., Tercé, F., Cocquerel, L., Wychowski, C., Vu-Dac, N., et al. (2008). Ceramide enrichment of the plasma membrane induces CD81 internalization and inhibits hepatitis C virus entry. Cell Microbiol. 10: 606–617, https://doi.org/10.1111/j.1462-5822.2007.01070.x.Search in Google Scholar

Von Bartheld, C.S. and Altick, A.L. (2011). Multivesicular bodies in neurons: distribution, protein content, and trafficking functions. Prog. Neurobiol. 93: 313–340, https://doi.org/10.1016/j.pneurobio.2011.01.003.Search in Google Scholar

Wang, P., Zhang, Y., Li, H., Chieu, H.K., Munn, A.L., and Yang, H. (2005). AAA ATPases regulate membrane association of yeast oxysterol binding proteins and sterol metabolism. EMBO J. 24: 2989-2999, https://doi.org/10.1038/sj.emboj.7600764.Search in Google Scholar

Wang, G., Dinkins, M., He, Q., Zhu, G., Poirier, C., Campbell, A., Mayer-Proschel, M., and Bieberich, E. (2012). Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): potential mechanism of apoptosis induction in Alzheimer disease (AD). J. Biol. Chem. 287: 21384–21395, https://doi.org/10.1074/jbc.m112.340513.Search in Google Scholar

Wang, Q., Zhuang, X., Mu, J., Deng, Z.-B., Jiang, H., Zhang, L., Xiang, X., Wang, B., Yan, J., Miller, D., et al. (2013). Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat. Commun. 4: 1867, https://doi.org/10.1038/ncomms3358.Search in Google Scholar

Wellington, C.L., and Frikke-Schmidt, R. (2016). Relation between plasma and brain lipids. Curr. Opin. lipidol. 27: 225–232, https://doi.org/10.1097/mol.0000000000000291.Search in Google Scholar

Wennberg, C.L., van der Spoel, D., and Hub, J.S. (2012). Large influence of cholesterol on solute partitioning into lipid membranes. J. Am. Chem. Soc. 134: 5351–5361, https://doi.org/10.1021/ja211929h.Search in Google Scholar

Wu, B.X., Clarke, C.J., Matmati, N., Montefusco, D., Bartke, N., and Hannun, Y.A. (2011). Identification of novel anionic phospholipid binding domains in neutral sphingomyelinase 2 with selective binding preference. J. Biol. Chem. 286: 22362–22371, https://doi.org/10.1074/jbc.m110.156471.Search in Google Scholar

Wydro, P., Flasiński, M., and Broniatowski, M. (2013). Does cholesterol preferentially pack in lipid domains with saturated sphingomyelin over phosphatidylcholine? A comprehensive monolayer study combined with grazing incidence X-ray diffraction and Brewster angle microscopy experiments. J. Colloid Interface Sci. 397: 122–130, https://doi.org/10.1016/j.jcis.2013.01.060.Search in Google Scholar

Yang, C., Zhang, M., and Merlin, D. (2018). Advances in plant-derived edible nanoparticle-based lipid nano-drug delivery systems as therapeutic nanomedicines. J. Mater. Chem. B 6: 1312–1321, https://doi.org/10.1039/c7tb03207b.Search in Google Scholar

Yuyama, K., Yamamoto, N., and Yanagisawa, K. (2008). Accelerated release of exosome-associated GM1 ganglioside (GM1) by endocytic pathway abnormality: another putative pathway for GM1-induced amyloid fibril formation. J. Neurochem. 105: 217–224, https://doi.org/10.1111/j.1471-4159.2007.05128.x.Search in Google Scholar

Yuyama, K., Sun, H., Mitsutake, S., and Igarashi, Y. (2012). Sphingolipid-modulated exosome secretion promotes clearance of amyloid-β by microglia. J. Biol. Chem. 287: 10977–10989, https://doi.org/10.1074/jbc.m111.324616.Search in Google Scholar

Yuyama, K., Takahashi, K., Usuki, S., Mikami, D., Sun, H., Hanamatsu, H., Furukawa, J., Mukai, K., and Igarashi, Y. (2019). Plant sphingolipids promote extracellular vesicle release and alleviate amyloid-β pathologies in a mouse model of Alzheimer’s disease. Sci. Rep. 9: 16827, https://doi.org/10.1038/s41598-019-53394-w.Search in Google Scholar

Zakharova, L., Svetlova, M., and Fomina, A.F. (2007). T cell exosomes induce cholesterol accumulation in human monocytes via phosphatidylserine receptor. J. Cell Physiol. 212: 174–181, https://doi.org/10.1002/jcp.21013.Search in Google Scholar

Received: 2020-02-17
Accepted: 2020-05-08
Published Online: 2020-07-18
Published in Print: 2020-10-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2020-0013/html
Scroll to top button