Skip to main content
Log in

Theoretical Investigation of Different Types of Trion States in GaAs Ellipsoidal Quantum Dot

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

Using the variational method, various types of mixed two-dimensional coupled negative and positive trions in a GaAs strongly oblate ellipsoidal quantum dot in the intermediate quantization mode were investigated. The trial wave function for the positive and negative trions is constructed on the basis of a single-particle wave function obtained in the framework of the adiabatic approximation. The dependences of the binding energy of the trion states and of the recombination of all types of trions on the geometric parameters of an ellipsoidal quantum dot are obtained. The radiative lifetime of various types of positive and negative trions is estimated for the intermediate quantization mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bimberg, D., Grundmann, M., and Ledentsov, N.N., Quantum dot heterostructures, John Wiley & Sons, England, 1999.

    Google Scholar 

  2. Nozik, A.J., Phys. E(Amsterdam,Neth.), 2004, vol. 14, p.115.

    Google Scholar 

  3. Ustinov, V.M., Zhokov, A.E., Zhukov, A.E., Egorov, A.Y., and Maleev, N.A., Quantum dot lasers, Oxford University Press on Demand, New York, USA, 2003.

    Book  Google Scholar 

  4. Blokland, J.H., Bozkurt, M., Ulloa, J.M., Reuter, D., Wieck, A.D., Koenraad, P.M., Christianen, P.C.M., and Maan, J.C., Appl. Phys. Lett., 2009, vol. 94, p. 023 107.

    Article  Google Scholar 

  5. Gambaryan, K.M., Aroutiounian, V.A., and Harutyunyan, V.G., Appl. Phys. Lett., 2012, vol. 101, p. 093103.

    Article  ADS  Google Scholar 

  6. Löffler, A., Reithmaier, J.P., Forchel, A., Sauerwald, A., Peskes, D., Kümmell, T., and Bacher, G., J. Cryst. Growth, 2006, vol. 286, p. 6.

    Article  ADS  Google Scholar 

  7. Iadonisi, G., Cantele, G., Ramaglia, V. M., and Ninno, D., Phys. Status Solidi(b), 2003, vol. 237, p. 320.

    Article  Google Scholar 

  8. Pokatilov, E.P., Croitoru, M.D., Fomin, V.M., and Devreese, J.T., Phys. Status Solidi(b), 2003, vol. 237, p. 244.

    Article  Google Scholar 

  9. Cantele, G., Ninno, D., and Iadonisi, G., Journal of Phys.: Cond. Matt., 2000, vol. 12, p. 9019.

    ADS  Google Scholar 

  10. Cantele, G., Ninno, D., and Iadonisi, G., Phys. Status Solidi(a), 2003, vol. 197, p. 432.

    Article  ADS  Google Scholar 

  11. Shi, L., and Yan, Z.W., Phys. Status Solidi C, 2011, vol. 8, p. 42.

    Article  ADS  Google Scholar 

  12. Dvoyan, K.G., Hayrapetyan, D.B., Kazaryan, E.M., and Tshantshapanyan, A.A., Nanoscale Res. Lett., 2007, vol. 2, p. 601.

    Article  ADS  Google Scholar 

  13. Barati, M., Rezaei, G., and Vahdani, M.R.K., Phys. Status Solidi(b), 2007, vol. 244, p. 2605.

    Article  Google Scholar 

  14. Bleyan, Y.Y., and Hayrapetyan, D.B., J. Contemp. Phys. (Arm. Acad. Sci.), 2019, vol. 54(2), p. 153.

    Google Scholar 

  15. Baghdasaryan, D.A., Hayrapetyan, D.B. and Kazaryan, E.M., The Europ. Phys. J. B, 2015, vol. 88(9), p. 223.

    Article  ADS  Google Scholar 

  16. Baghdasaryan, D.A., Hayrapetyan, D.B., and Kazaryan, E.M., Phys. B: Cond. Mett., 2015, vol. 479, p. 85.

    Article  ADS  Google Scholar 

  17. Hayrapetyan, D.B., Dvoyan, K.G., and Kazaryan, E.M., J. Contemp. Phys. (Arm. Acad. Sci.), 2007, vol. 42, p. 151.

    Google Scholar 

  18. Sadeghi, E., and LM, M.M., Chinese Journal Phys., 2016, vol. 54, p. 773.

    Article  ADS  Google Scholar 

  19. Hayrapetyan, D.B., Ohanyan, G.L., Baghdasaryan, D.A., Sarkisyan, H.A., Baskoutas, S., and Kazaryan, E.M., Phys. E(Amsterdam,Neth.), 2018, vol. 95, p. 27.

    Google Scholar 

  20. Shi, L., and Yan, Z.W., Superlattices Microstruct, 2016, vol. 94, p. 204.

    Article  ADS  Google Scholar 

  21. Baghdasaryan, D.A., Hayrapetyan, D.B., and Kazaryan, E.M., J. Nanophotonics, 2016, vol. 10, p. 033508.

    Article  ADS  Google Scholar 

  22. Sadeghi, E., Phys. E(Amsterdam,Neth.), 2015, vol. 73, p. 1.

    Google Scholar 

  23. Lee, I.H., Kim, Y.H., and Ahn, K.H., J. Phys.: Cond. Matt., 2001, vol. 13, p. 1987.

    ADS  Google Scholar 

  24. Hayrapetyan, D.B., J. Contemp. Phys. (Arm. Acad. Sci.), 2007, vol. 42, p. 292.

    Google Scholar 

  25. Hayrapetyan, D.B., Kazaryan, E.M., and Sarkisyan, H.A., Phys. E(Amsterdam,Neth.), 2016, vol. 75, p. 353.

    Google Scholar 

  26. Hayrapetyan, D.B., Kazaryan, E.M., and Sarkisyan, H.A., J. Contemp. Phys. (Arm. Acad. Sci.), 2013, vol. 48, p. 32.

    Google Scholar 

  27. Lampert, M.A., Phys. Rev. Lett., 1958, vol. 1, p. 450.

    Article  ADS  Google Scholar 

  28. Stebe, B., Moradi, A., and Dujardin, F., Phys. Rev. B, 2000, vol. 61, p. 7231.

    Article  ADS  Google Scholar 

  29. Szafran, B., Stébé, B., Adamowski, J., and Bednarek, S., J. Phys.: Condens. Matt., 2000, vol. 12, p. 2453.

    ADS  Google Scholar 

  30. Szafran, B., Stébé, B., Adamowski, J., and Bednarek, S., Phys. Rev. B, 2002, vol. 66, p. 165 331.

    Article  Google Scholar 

  31. Hayrapetyan, D.B., Bleyan, Y.Y., Baghdasaryan, D.A., Sarkisyan, H.A., Baskoutas, S., and Kazaryan, E.M., Phys. E.(Amsterdam,Neth.), 2019, vol. 105, p. 47.

    Google Scholar 

  32. Whittaker D.M., and Shields, A.J., Phys. Rev. B, 1997, vol. 56, p. 15 185.

    Article  Google Scholar 

  33. Riva, C., Peeters, F.M., and Varga, K., Phys. Rev. B, 2000, vol. 61, p. 13 873.

    Article  Google Scholar 

  34. Finkelstein, G., Umansky, V., Bar-Joseph, I., Ciulin, V., Haacke, S., Ganiere, J.D., and Deveaud, B., Phys. Rev. B, 1998, vol. 58, p. 12 637.

    Article  Google Scholar 

  35. Esser, A., Runge, E., Zimmermann, R., and Langbein, W., Phys. Rev. B, 2000, vol. 62, p. 8232.

    Article  ADS  Google Scholar 

  36. Warburton, R.J., Dürr, C.S., Karrai, K., Kotthaus, J.P., Medeiros-Ribeiro, G., and Petroff, P.M., Phys. Rev. Lett., 1997, vol. 79, p. 5282.

    Article  ADS  Google Scholar 

  37. Kheng, K., Cox, R.T., d’Aubigné, M.Y., Bassani, F., Saminadayar, K. and Tatarenko, S., Phys. Rev. Lett., 1993, vol. 71, p. 1752.

    Article  ADS  Google Scholar 

  38. Narvaez, G.A., Bester, G., and Zunger, A., Phys. Rev. B, 2005, vol. 72, p. 245 318.

    Article  Google Scholar 

  39. Sahin, M., and Koç, F., Appl. Phys. Lett., 2013, vol. 102, p. 183 103.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to David Boris Hayrapetyan for the assistance provided in the implementation of this work.

Funding

The investigation was financially supported by the SC MESCS of Republic of Armenia within the framework of the thematic research project No. 18T-1C062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Y. Bleyan.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bleyan, Y.Y. Theoretical Investigation of Different Types of Trion States in GaAs Ellipsoidal Quantum Dot. J. Contemp. Phys. 55, 137–143 (2020). https://doi.org/10.3103/S1068337220020061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337220020061

Keywords:

Navigation