Skip to main content
Log in

Magnetoresistance in Quasi-One-Dimensional Weyl Semimetal (TaSe4)2I

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Magnetic field effect on linear and nonlinear conductivity in a quasi-one-dimensional Weyl semimetal with a charge density wave (TaSe4)2I is studied. Longitudinal magnetoresistance in all known regimes of charge-density wave motion (linear conduction, creep, sliding, “Fröhlich superconductivity”) is positive and does not exceed a fraction of per cent. Similar magnetotransport measurements were performed in samples profiled by focused ion beams is such a way that motion of the charge-density wave in them is accompanied by phase slip of the charge-density wave. In such samples, a peak-like non-parabolic negative magnetoresistance is observed in relatively small magnetic fields B ≲ 4 T in the nonlinear conduction regime in both longitudinal and transverse geometries. Our results differ significantly from ones obtained earlier and raise the question concerning conditions for observing the axion anomaly in Weyl semimetals in the Peierls state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. B. Nielsen and M. Ninomiya, Phys. Lett. B 130, 389 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  2. D. T. Son and B. Z. Spivak, Phys. Rev. B 88, 104412 (2013).

    Article  ADS  Google Scholar 

  3. A. A. Burkov, Phys. Rev. Lett. 113, 247203 (2014).

    Article  ADS  Google Scholar 

  4. X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Zh. Yang, H. Liang, M. Xue, H. Weng, Zh. Fang, X. Dai, and G. Chen, Phys. Rev. X 5, 031023 (2015).

    Google Scholar 

  5. C.-Zh. Li, L.-X. Wang, H. Liu, J. Wang, Z.-M. Liao, and D.-P. Yu, Nat. Commun. 6, 10137 (2015).

    Article  ADS  Google Scholar 

  6. P. Monceau, Adv. Phys. 61, 325 (2012).

    Article  ADS  Google Scholar 

  7. P. Gressier, M. H. Whangbo, A. Meerschaut, and J. Rouxel, Inorg. Chem. 23, 1221 (1984).

    Article  Google Scholar 

  8. J. Gooth, B. Bradlyn, S. Honnali, C. Schindler, N. Kumar, J. Noky, Y. Qi, C. Shekhar, Y. Sun, Z. Wang, B. A. Bernevig, and C. Felser, Nature (London, U.K.) 575, 315 (2019).

    Article  ADS  Google Scholar 

  9. Y. Zhang, L.-F. Lin, A. Moreo, Sh. Dong, and E. Dagotto, Phys. Rev. B 101, 174106 (2020).

    Article  ADS  Google Scholar 

  10. X.-P. Li, K. Deng, B. Fu, Y. Li, D. Ma, J. Han, J. Zhou, S. Zhou, and Y. Yao, arXiv: 1909.12178.

  11. W. Shi, B. J. Wieder, H. L. Meyerheim, et al., arXiv:1909.04037.

  12. Z. Z. Wang, M. C. Saint-Lager, P. Monceau, M. Renard, P. Gressier, A. Meerschaut, L. Guemas, and J. Rouxel, Solid State Commun. 46, 325 (1983).

    Article  ADS  Google Scholar 

  13. M. Maki, M. Kaiser, A. Zettle, and G. Grüner, Solid State Commun. 46, 497 (1983).

    Article  ADS  Google Scholar 

  14. L. Forro, J. R. Cooper, A. Janossy, and M. Maki, Solid State Commun. 62, 715 (1987).

    Article  ADS  Google Scholar 

  15. A. Bilušic, I. Tkalcec, H. Berger, L. Forro, and A. Smontara, Fizika A (Zagreb) 9, 169 (2000).

    ADS  Google Scholar 

  16. A. Smontara, I. Tkalcec, A. Bilušic, M. Budimir, and H. Berger, Phys. B (Amsterdam, Neth.) 316–317, 279 (2002).

    Article  Google Scholar 

  17. D. Starešinić, A. Kiš, K. Biljaković, B. Emerling, J. W. Brill, J. Souletie, H. Berger, and F. Lévy, Eur. Phys. J. B 29, 71 (2002).

    Article  ADS  Google Scholar 

  18. G. Mihaly and P. Beauchêne, Solid State Commun. 63, 911 (1987).

    Article  ADS  Google Scholar 

  19. S. V. Zaitsev-Zotov, Phys. Rev. Lett. 71, 605 (1993).

    Article  ADS  Google Scholar 

  20. L. Sneddon, Phys. Rev. B 29, 719 (1984).

    Article  ADS  Google Scholar 

  21. X. J. Zhang and N. P. Ong, Phys. Rev. Lett. 55, 2919 (1985).

    Article  ADS  Google Scholar 

  22. R. M. Fleming, R. J. Cava, L. F. Schneerneyer, E. A. Rietman, and R. G. Dunn, Phys. Rev. B 33, 5450 (1986).

    Article  ADS  Google Scholar 

  23. S. V. Zaitsev-Zotov, Phys. Usp. 47, 533 (2004).

    Article  ADS  Google Scholar 

  24. P. Monceau, M. Renard, J. Richard, M. C. Saint-Lager, and Z. Z. Wang, Lect. Notes Phys. 217, 279 (1985).

    Article  ADS  Google Scholar 

  25. K. Maki, Phys. Rev. B 33, 2852(R) (1986).

    Article  ADS  Google Scholar 

  26. B. L. Al’tshuler, A. G. Aronov, A. I. Larkin, and D. E. Khmel’nitskil, Sov. Phys. JETP 542, 411 (1981).

    Google Scholar 

  27. B. L. Altshuler, D. Khmel’nitzkii, A. I. Larkin, and P. A. Lee, Phys. Rev. B 22, 5142 (1980).

    Article  ADS  Google Scholar 

  28. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

    Article  ADS  Google Scholar 

  29. S. A. Studenikin, P. T. Coleridge, P. Poole, and A. Sachrajda, JETP Lett. 77, 311 (2003).

    Article  ADS  Google Scholar 

  30. K. Maki, Lect. Notes Phys. 217, 218 (1985).

    Article  ADS  Google Scholar 

  31. D. Feinberg and J. Friedel, J. Phys. France 49, 485 (1988).

    Article  Google Scholar 

  32. M. P. Maher, T. L. Adelman, S. Ramakrishna, J. P. McCarten, D. A. DiCarlo, and R. E. Thorne, Phys. Rev. Lett. 68, 3084 (1992).

    Article  ADS  Google Scholar 

  33. S. Brazovskii and S. Matveenko, J. Phys. I 1, 1173 (1991).

    Google Scholar 

  34. B. Sbierski, G. Pohl, E. J. Bergholtz, and P. W. Brouwer, Phys. Rev. Lett. 113, 026602 (2014).

    Article  ADS  Google Scholar 

  35. X.-T. Ji, H.-Zh. Lu, Zh.-G. Zhu, and G. Su, J. Appl. Phys. 123, 203901 (2018).

    Article  ADS  Google Scholar 

  36. S.-B. Zhang, H.-Zh. Lu, and Sh.-Q. Shen, New J. Phys. 18, 053039 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to Helmuth Berger for providing the samples and N.I. Fedotov for useful comments.

Funding

I.A. Cohn and S.V. Zaitsev-Zotov acknowledge the support of the Russian Science Foundation (project no. 16-12-10335). S.G. Zybtsev and A.P. Orlov performed sample preparation and their profiling by FIB in the framework of the Russian State task.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Zaitsev-Zotov.

Additional information

Published in Russian in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 2, pp. 93–100.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohn, I.A., Zybtsev, S.G., Orlov, A.P. et al. Magnetoresistance in Quasi-One-Dimensional Weyl Semimetal (TaSe4)2I. Jetp Lett. 112, 88–94 (2020). https://doi.org/10.1134/S0021364020140040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020140040

Navigation