Skip to main content
Log in

Dynamics of Particles Trapped by Dissipative Domain Walls

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We study the interactions of the dissipative domain walls with dielectric particles. It is shown that particles can be steadily trapped by the moving domain walls. The influence of the ratchet effect on particle trapping is considered. It is demonstrated, that the ratchet effect allows to obtain high accuracy in particle manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. Peregrine, ANZIAM J. 25, 16 (1983).

    Google Scholar 

  2. N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett. 15, 6 (1965).

    Article  Google Scholar 

  3. Optical Solitons—Theory and Experiment, Ed. by J. T. Taylor (Cambridge Univ. Press, New York, 1992).

    Google Scholar 

  4. M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993).

    Article  ADS  Google Scholar 

  5. U. Peschel, D. Michaelis, and C. O. Weiss, IEEE J. Quantum Electron. 39, 1 (2003).

    Article  ADS  Google Scholar 

  6. B. Kochetov, I. Vasylieva, A. Butrym, and V. R. Tuz, Phys. Rev. E 99, 052214 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  7. L. F. Mollenauer, E. Lichtman, M. J. Neubelt, and G. T. Harvey, in Proceedings of the Conference on Optical Fiber Communication (IEEE, 1993), Vol. 4, p. PD8.

  8. D. A. Dolinina, A. S. Shalin, and A. V. Yulin, JETP Lett. 110, 744 (2019).

    Article  ADS  Google Scholar 

  9. D. A. Dolinina, A. S. Shalin, and A. V. Yulin, JETP Lett. 111, 268 (2020).

    Article  ADS  Google Scholar 

  10. N. N. Rosanov and G. V. Khodova, J. Opt. Soc. Am. B 7, 1057 (1990).

    Article  ADS  Google Scholar 

  11. A. V. Yulin, O. A. Egorov, F. Lederer, and D. V. Skryabin, Phys. Rev. A 78, 061801 (2008).

    Article  ADS  Google Scholar 

  12. M. Pesch, W. Lange, D. Gomila, T. Ackemann, W. J. Firth, and G.-L. Oppo, Phys. Rev. Lett. 99, 153902 (2007).

    Article  ADS  Google Scholar 

  13. A. V. Yulin, A. Aladyshkina, and A. S. Shalin, Phys. Rev. E 94, 022205 (2016).

    Article  ADS  Google Scholar 

  14. A. Szöke, V. Daneu, J. Goldhar, and N. A. Kurnit, Appl. Phys. Lett. 15, 376 (1969).

    Article  ADS  Google Scholar 

  15. N. N. Rozanov, Sov. Phys. JETP 53, 47 (1981).

    Google Scholar 

  16. A. V. Yulin, A. R. Champneys, and D. V. Skryabin, Phys. Rev. A 78, 011804(R) (2008).

    Article  ADS  Google Scholar 

  17. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and St. Chu, Opt. Lett. 11, 5 (1986).

    Article  Google Scholar 

  18. N. N. Rozanov, V. E. Semenov, and G. V. Khodova, Sov. J. Quantum Electron. 12, 193 (1982).

    Article  ADS  Google Scholar 

  19. B. Garbin, Y. Wang, S. G. Murdoch, G.-L. Oppo, S. Coen, and M. Erkintalo, Eur. Phys. J. D 71, 240 (2017).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of Russian Federation (state assignment no. 2019–1246), partially by the Russian Foundation for Basic Research (project no. 18-02-00414), and by the Russian Science Foundation (project no. 18-72-10127, calculations of the dynamics of fronts).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Dolinina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolinina, D.A., Shalin, A.S. & Yulin, A.V. Dynamics of Particles Trapped by Dissipative Domain Walls. Jetp Lett. 112, 71–76 (2020). https://doi.org/10.1134/S0021364020140027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020140027

Navigation