Skip to main content
Log in

Effect of Co-catalyst (CuO, CoO or NiO) on Bi2O3–TiO2 Structures and Its Impact on the Photocatalytic Reduction of 4-nitrophenol

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

CoO, NiO or CuO oxides were employed as co-catalysts on Bi2O3–TiO2 (BT) structure in the photocatalytic reduction of 4-nitrophenol under UV light irradiation. The intimate contact between the co-catalysts and base material contributed to an enhancement in the photocatalytic activity due to the formation of the p-n heterojunction that effectively separates charge carriers. CuO–BT, NiO–BT and Co–BT showed a reduction of 4-nitrophenol of 83%, 59% and 52% after 60 min under illumination, respectively, which are higher than that obtained with the BT semiconductor. The co-catalysts increase the donor density favoring the reduction of 4-nitrophenol. The donor density calculated for CuO–BT, NiO–BT and Co–BT was of N= 15.5 × 1018 cm−3, N= 12.4 × 1018 cm−3 and N= 9.41 × 1018 cm−3, respectively. The results were associated to that CuO and NiO oxides are considered as reduction co-catalysts while CoO oxide is used as oxidation co-catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li Z, He M, Wen Y, Zhang X, Hu M, Li R, Liu J, Chu J, Ma Z, Xing X, Yu C, Wei Z, Li Y (2020) Highly monodisperse Cu-Sn alloy nanoplates for efficient nitrophenol reduction reaction via promotion effect of tin. Inorg Chem 59:1522–1531

    CAS  PubMed  Google Scholar 

  2. Ghorai TK (2015) Synthesis of spherical mesoporous titania modified iron-niobate nanoclusters for photocatalytic reduction of 4-nitrophenol. J Mater Res Technol 4(2):133–143

    CAS  Google Scholar 

  3. Radhika NP, Selvin R, Kakkar R, Umar A (2019) Recent advances in nano-photocatalysts for organic synthesis. Arab J Chem 12:4550–4578

    CAS  Google Scholar 

  4. Ahn W-Y, Sheeley SA, Rajh T, Cropek DM (2007) Photocatalytic reduction of 4-nitrophenol with arginine-modified titanium dioxide nanoparticles. Appl Catal B 74:103–110

    CAS  Google Scholar 

  5. Chabri S, Dhara A, Show B, Adak D, Sinha A, Mukherjee N (2016) Mesoporous CuO–ZnO p–n heterojunction based nanocomposites with high specific surface area for enhanced photocatalysis and electrochemical sensing. Catal Sci Technol 6:3238–3252

    CAS  Google Scholar 

  6. Ahmed MA, El-Katori EE, Gharni ZH (2013) Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol–gel method. J Alloys Compd 553:19–29

    CAS  Google Scholar 

  7. Moslah C, Aguilar T, Alcántara R, Ksibi M, Navas J (2019) Synthesis of W-doped TiO2 by low‐temperature hydrolysis: effects of annealing temperature and doping content on the surface microstructure and photocatalytic activity. J Chin Chem Soc 66:99–109

    CAS  Google Scholar 

  8. Ramírez-Ortega D, Meléndez AM, Acevedo-Peña P, González I, Arroyo R (2014) Semiconducting properties of ZnO/TiO2 composites by electrochemical measurements and their relationship with photocatalytic activity. Electrochim Acta 140:541–549

    Google Scholar 

  9. Ramírez-Ortega D, Acevedo-Peña P, Tzompantzi F, Arroyo R, González I (2017) Energetic states in SnO2-TiO2 structures and their impact on interfacial charge transfer process. J Mater Sci 52:260–275

    Google Scholar 

  10. Guerrero-Araque D, Ramírez-Ortega D, Acevedo-Peña P, Tzompantzi F, Calderón HA, Gómez R (2017) Interfacial charge transfer process across ZrO2-TiO2 heterojunction and its impact on photocatalytic activity. J Photochem Photobiol A 335:276–286

    CAS  Google Scholar 

  11. Mei Q, Zhang F, Wang N, Yang Y, Wu R, Wang W (2019) TiO/Fe2O3/2heterostructures with enhanced photocatalytic reduction of Cr(VI) under visible light irradiation. RSC Adv 9:22764–22771

    CAS  Google Scholar 

  12. Li G, Huang J, Chen J, Deng Z, Huang Q, Liu Z, Guo W, Cao R (2019) Highly active photocatalyst of Cu2O/TiO2 octahedron for hydrogen generation. ACS Omega 4:3392–3397

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Vigil-Castillo HH, Hernández-Ramírez A, Guzmán-Mar JL, Ramos-Delgado NA, Villanueva-Rodríguez M (2019) Performance of Bi2O3/TiO2 prepared by sol-gel on p-Cresol degradation under solar and visible light. Environ Sci Pollut Res 26(5):4215–4223

    CAS  Google Scholar 

  14. Huang Y, Wei Y, Wang J, Luo D, Fan L, Wu J (2017) Controllable fabrication of Bi2O3/TiO2 heterojunction with excellent visible-light responsive photocatalytic performance. Appl Surf Sci 423:119–130

    CAS  Google Scholar 

  15. Reddy NL, Emin S, Valant M, Shankar MV (2017) Nanostructured Bi2O3@TiO2 photocatalyst for enhanced hydrogen production. Int J Hydrogen Energy 42(10):6627–6636

    Google Scholar 

  16. Naik B, Martha S, Parida KM (2011) Facile fabrication of Bi2O3/TiO2-xNx nanocomposites for excellent visible light driven photocatalytic hydrogen evolution. Int J Hydrogen Energy 36(4):2794–2802

    CAS  Google Scholar 

  17. Li Y, Wang L, Liang J, Gao F, Yin K, Dai P (2017) Hierarchical heterostructure of ZnO@TiO2 hollow spheres for highly efficient photocatalytic hydrogen evolution. Nanoscale Res Lett 12:531

    PubMed  PubMed Central  Google Scholar 

  18. Bai S, Yin W, Wang L, Li Z, Xiong Y (2016) Surface and interface design in cocatalysts for photocatalytic water splitting and CO2 reduction. RSC Adv 6:57446–57463

    CAS  Google Scholar 

  19. Uddin MT, Nicolas Y, Olivier C, Jaegermann W, Rockstroh N, Junge H, Toupance T (2017) Band alignment investigations of heterostructure NiO/TiO2 nanomaterials used as efficient heterojunction earth-abundant metal oxide photocatalysts for hydrogen production. Phys Chem Chem Phys 19:19279–19288

    CAS  PubMed  Google Scholar 

  20. Sree GS, Botsa SM, Jagan B, Reddy M, Venkata K, Ranjitha B (2020) Enhanced UV–Visible triggered photocatalytic degradation of Brilliant green by reduced graphene oxide based NiO and CuO ternary nanocomposite and their antimicrobial activity. Arab J Chem 13(4):5137–5150

    CAS  Google Scholar 

  21. Guerrero-Araque D, Acevedo-Peña P, Ramírez-Ortega D, Lartundo-Rojas L, Gómez R (2017) SnO2-TiO2 structures and the effect of CuO, CoO metal oxide on photocatalytic hydrogen production. J Chem Technol Biotechnol 92:1531–1539

    CAS  Google Scholar 

  22. Guerrero-Araque D, Acevedo-Peña P, Ramírez-Ortega D, Gómez R (2017) Improving photocatalytic reduction of 4-nitrophenol over ZrO2-TiO2 by synergistic interaction between methanol and sulfite ions. New J Chem 41:12655–12663

    CAS  Google Scholar 

  23. Hajra P, Shyamal S, Mandal H, Fageria P, Pande S, Bhattacharya C (2014) Photocatalytic activity of Bi2O3 nanocrystalline semiconductor developed via chemical-bath synthesis. Electrochim Acta 123:494–500

    CAS  Google Scholar 

  24. Fu W, Li G, Wang Y, Zeng S, Yan Z, Wang J, Xin S, Zhang L, Wu S, Zhang Z (2018) Facile formation of mesoporous structured mixed-phase (anatase/rutile) TiO2 with enhanced visible light photocatalytic activity. Chem Commun 54:58–61

    CAS  Google Scholar 

  25. Sánchez-Martínez D, Juárez-Ramírez I, Torres-Martínez L, León-Abarte I (2016) Photocatalytic properties of Bi2O3 powders obtained by an ultrasound-assisted precipitation method. Ceram Int 42:2013–2020

    Google Scholar 

  26. Viruthagiri G, Kannan P (2019) Visible light mediated photocatalytic activity of cobalt doped Bi2O3 nanoparticles. J Mater Res Technol 8:127–133

    CAS  Google Scholar 

  27. Su K, Ai Z, Zhang L (2012) Efficient visible light-driven photocatalytic degradation of pentachlorophenol with Bi2O3/TiO2xBx. J Phys Chem C 116:17118–17123

    CAS  Google Scholar 

  28. Amanchi SR, Kumar KV, Lakshminarayana B, Satyanarayana G, Subrahmanyam Ch (2019) Photocatalytic hydrogenation of nitroarenes: supporting effect of CoOx on TiO2 nanoparticle. New J Chem 43:748–754

    CAS  Google Scholar 

  29. Ku Y, Lin C-N, Hou W-M (2011) Characterization of coupled NiO/TiO2 photocatalyst for the photocatalytic reduction of Cr(VI) in aqueous solution. J Mol Catal A 349:20–27

    CAS  Google Scholar 

  30. Bokhimi X, Morales A, Novaro O, López T, Chimal O, Asomoza M, Gómez R (1997) Effect of copper precursor on the stabilization of titania phases, and the optical properties of Cu/TiO2 prepared with the sol-gel technique. Chem Mater 9:2616–2620

    CAS  Google Scholar 

  31. Choudhury B, Dey M, Choudhury A (2014) Shallow and deep trap emission and luminescence quenching of TiO2 nanoparticles on Cu doping. Appl Nanosci 4:499–506

    CAS  Google Scholar 

  32. Khan MA, Al-Oufi M, Tossef A, Al-Salik Y, Idriss H (2015) On the role of CoO in CoOx/TiO2 for the photocatalytic hydrogen production from water in the presence of glycerol. Catal Struct React 1–4:192–200

    Google Scholar 

  33. Huerta-Flores AM, Torres-Martínez LM, Moctezuma E, Ceballos-Sanchez O (2016) Enhanced photocatalytic activity for hydrogen evolution of SrZrO3 modified with earth abundant metal oxides (MO, M = Cu, Ni, Fe, Co). Fuel 181:670–679

    CAS  Google Scholar 

  34. Imani R, Pazoki M, Tiwari A, Boschloo G, Turner APF, Kralj-Iglič V, Iglič A (2015) Band edge engineering of TiO2@DNA nanohybrids and implications for capacitive energy storage devices. Nanoscale 7:10438–10448

    CAS  PubMed  Google Scholar 

  35. Zhai Y, Ji Y, Wang G, Zhu Y, Liu H, Zhong Z, Su F (2015) RSC Adv 5:73011–73019

    CAS  Google Scholar 

  36. Li H, Zhu L, Xia M, Jin N, Luo K, Xie Y (2016) Synthesis and investigation of novel ZnO–CuO core-shell nanospheres. Mater Lett 174:99–101

    CAS  Google Scholar 

  37. Shuang S, Lv R, Xie Z, Zhang Z (2016) Surface plasmon enhanced photocatalysis of Au/Pt-decorated TiO2 nanopillar arrays. Sci Rep 6:26670

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hou J, Yang C, Wang Z, Zhou W, Jiao S, Zhu H (2013) In situ synthesis of phase heterojunction on Bi2O3 nanowires with exceptional visible-light photocatalytic performance. Appl Catal B 142–143:504–511

    Google Scholar 

  39. Hernández-Gordillo A, Ramos A, Acevedo-Peña P, Jagdale P, Tagliaferro A, Rodil SE (2020) Dependence of the photoactivity of CdS prepared in Butanol-Ethylenediamine mixture in function of different sacrificial electron donors. Catal Today 341:59–70

    Google Scholar 

  40. Garay-Rodriguez LF, Huerta-Flores AM, Torres-Martinez LM, Moctezuma E (2018) Photocatalytic hydrogen evolution over the isostructural titanates: Ba3Li2Ti8O20 and Na2Ti6O13 modified with metal oxide nanoparticles. Int J Hydrogen Energy 43:2148–2159

    CAS  Google Scholar 

  41. Lei Y, Zhao G, Liu M, Zhang Z, Tong X, Cao T (2009) Fabrication, characterization, and photoelectrocatalytic application of ZnO nanorods grafted on vertically aligned TiO2 nanotubes. J Phys Chem C 113(44):19067–19076

    CAS  Google Scholar 

  42. Sellers MCK, Seebauer EG (2011) Measurement method for carrier concentration in TiO2 via the Mott–Schottky approach. Thin Solid Films 519:2103–2110

    CAS  Google Scholar 

  43. Santos HLS, Corradini PG, Andrade MAS, Mascaro LH (2020) CuO/NiOx thin film–based photocathodes for photoelectrochemical water splitting. J Solid State Electrochem. https://doi.org/10.1007/s10008-020-04513-5

    Article  Google Scholar 

  44. Liu Z, Wang Q, Tan X, Zheng S, Zhang H, Wang Y, Gao S (2020) Solvothermal preparation of Bi/Bi2O3 nanoparticles on TiO2 NTs for the enhanced photoelectrocatalytic degradation of pollutants. J Alloy Compd 815:152478

    CAS  Google Scholar 

  45. Liu Z, Song Y, Wang Q, Jia Y, Tan X, Du X, Gao S (2019) Solvothermal fabrication and construction of highly photoelectrocatalytic TiO2 NTs/Bi2MoO6 heterojunction based on titanium mesh. J Colloid Interface Sci 556:92–101

    CAS  PubMed  Google Scholar 

  46. Guerrero-Araque D, Acevedo-Peña P, Ramírez-Ortega D, Calderón HA, Gómez R (2017) Charge transfer processes involved in photocatalytic hydrogen production over CuO/ZrO2-TiO2 materials. Int J Hydrogen Energy 42(15):9744–9753

    CAS  Google Scholar 

  47. Wang Y, Wang Q, Zhang H, Wu Y, Jia Y, Jin R, Gao S (2020) CTAB-assisted solvothermal construction of hierarchical Bi2MoO6/Bi5O7Br with improved photocatalytic performances. Sep Purif Technol 242:116775

    CAS  Google Scholar 

  48. Wang Q, Li H, Yu X, Jia Y, Chang Y, Gao S (2020) Morphology regulated Bi2WO6 nanoparticles on TiO2 nanotubes by solvothermal Sb3+ doping as effective photocatalysts for wastewater treatment. Electrochim Acta 330:135167

    CAS  Google Scholar 

  49. Liu Z, Wang Q, Cao D, Wang Y, Jin R, Gao S (2020) Vertical grown BiOI nanosheets on TiO2 NTs/Ti meshes toward enhanced photocatalytic performances. J Alloy Compd 820:153109

    CAS  Google Scholar 

  50. Meng Y, Dai T, Zhou X, Pan G, Xia S (2020) Photodegradation of volatile organic compounds catalyzed by MCr-LDHs and hybrid MO@MCr-LDHs (M = Co, Ni, Cu, Zn): the comparison of activity, kinetics and photocatalytic mechanism. Catal Sci Technol 10:424–439

    CAS  Google Scholar 

Download references

Acknowledgements

We thank CONACyT for financial support granted through the project CB-2015-01 256410 Synthesis of hybrid Materials. Materials for Alternative energies. SEP-Profides 2018, UANL-UAM.CB-2015-01 256410. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We also thank to the Laboratorio Universitario de Caracterización Espectroscópica (LUCE-UNAM) and Laboratorio Universitario de Nanotecnología Ambiental (LUNA-UNAM) as well as V. Maturano and S. Islas for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Guerrero-Araque.

Ethics declarations

Conflict of interest

The authors declare that the contents of this work have not conflict of interest with any individual or organization.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrero-Araque, D., Ramírez-Ortega, D., Calderon, H.A. et al. Effect of Co-catalyst (CuO, CoO or NiO) on Bi2O3–TiO2 Structures and Its Impact on the Photocatalytic Reduction of 4-nitrophenol. Top Catal 64, 112–120 (2021). https://doi.org/10.1007/s11244-020-01335-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01335-7

Keywords

Navigation