Skip to main content
Log in

Thiophene-containing monomers for the synthesis of new polythiopheneferrocenes

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Synthesis of arylenebis(2-aminothiophene-3-carbonitriles) by the Gewald reaction was developed. The structures of the synthesized monomers were established by IR and NMR spectroscopy, mass spectrometry, and microanalysis. Polycondensation of these monomers with diacetylferrocene gave azomethine-bridged polythiopheneferrocenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Riquelme, C. Garzón, C. Bergmann, J. Geshev, R. Quijada, Eur. Polym. J., 2016, 75, 200–209; DOI: https://doi.org/10.1016/j.eurpolymj.2015.12.007.

    Article  CAS  Google Scholar 

  2. J. Wu, L. Wang, H. Yu, Zain-ul-Abdin, R. U. Khan, M. Haroon, J. Organomet. Chem., 2017, 828, 38–51; DOI: https://doi.org/10.1016/j.jorganchem.2016.10.041.

    Article  CAS  Google Scholar 

  3. N. D. Kirchhofer, Z. D. Rengert, F. W. Dahlquist, T.-Q. Nguyen, G. C. Bazan, Chem, 2017, 2, 240–257; DOI: https://doi.org/10.1016/j.chempr.2017.01.001.

    Article  CAS  Google Scholar 

  4. Z. Wang, H. Tian, K. Chen, Dyes Pigm., 2001, 51, 161–165; DOI: https://doi.org/10.1016/S0143-7208(01)00058-4.

    Article  CAS  Google Scholar 

  5. Y.-W. Huang, N.-Y. Fu, Chin. Chim. Lett., 2011, 22, 1301–1304; DOI: https://doi.org/10.1016/j.cclet.2011.05.039.

    Article  CAS  Google Scholar 

  6. A. M. El-Zohry, J. Cong, M. Karlsson, L. Kloo, B. Zietz, Dyes Pigm., 2016, 132, 360–368; DOI: https://doi.org/10.1016/j.dyepig.2016.05.021.

    Article  CAS  Google Scholar 

  7. S. Prabu, E. David, T. Viswanathan, J. S. A. Jinisha, R. Malik, K. R. Maiyelvaganan, M. Prakash, N. Palanisami, J. Mol. Struct., 2020, 1202, 127302; DOI: https://doi.org/10.1016/j.molstruc.2019.127302.

    Article  CAS  Google Scholar 

  8. S. Kaur, M. Kaur, P. Kaur, K. Clays, K. Singh, Coord. Chem. Rev., 2017, 343, 185–219; DOI: https://doi.org/10.1016/j.ccr.2017.05.008.

    Article  CAS  Google Scholar 

  9. R. Teimuri-Mofrad, K. Rahimpour, R. Ghadari, S. Ahmadi-Kandjani, J. Mol. Liq., 2017, 244, 322–329; DOI: https://doi.org/10.1016/j.molliq.2017.09.002.

    Article  CAS  Google Scholar 

  10. D. Brunel, G. Noirbent, F. Dumur, Dyes Pigm., 2019, 170, 107611; DOI: https://doi.org/10.1016/j.dyepig.2019.107611.

    Article  CAS  Google Scholar 

  11. S. S. Sajadikhah, E. Jazinizadeh, Chem. Heterocycl. Compd., 2018, 54, 1020; DOI: https://doi.org/10.1007/s10593-018-2384-x.

    Article  CAS  Google Scholar 

  12. H. Gu, S. Mu, G. Qiu, X. Liu, L. Zhang, Y. Yuan, D. Astruc, Coord. Chem. Rev., 2018, 364, 51–85; DOI: https://doi.org/10.1016/j.ccr.2018.03.013.

    Article  CAS  Google Scholar 

  13. M. Saleem, H. Yu, L. Wang, Zain-ul-Abdin, H. Khalid, M. Akram, N. M. Abbasi, J. Huang, Anal. Chim. Acta, 2015, 876, 9–25; DOI: https://doi.org/10.1016/j.aca.2015.01.012.

    Article  CAS  Google Scholar 

  14. T. L. Gilchrist, Heterocyclic Chemistry, 2nd ed., Longman Scientific & Technical, London, 1992, 396 pp.

    Google Scholar 

  15. K. Gewald, Chimia, 1980, 34, 101.

    CAS  Google Scholar 

  16. N. N. Makhova, L. I. Belen’kii, G. A. Gazieva, I. L. Dalinger, L. S. Konstantinova, V. V. Kuznetsov, A. N. Kravchenko, M. M. Krayushkin, O. A. Rakitin, A. M. Starosotnikov, L. L. Fershtat, S. A. Shevelev, V. Z. Shirinian, V. N. Yarovenko, Russ. Chem. Rev., 2020, 89, 55; DOI: https://doi.org/10.1070/RCR4914.

    Article  CAS  Google Scholar 

  17. R. A. Dvorikova, A. S. Peregudov, A. A. Korlyukov, M. I. Buzin, I. V. Nagornova, V. A. Vasnev, Russ. Chem. Bull., 2019, 68, 1435; DOI: https://doi.org/10.1007/s11172-019-2573-5.

    Article  CAS  Google Scholar 

  18. D. M. Barnes, A. R. Haight, T. Hameury, M. A. McLaughlin, J. Mei, J. S. Tedrow, J. D. R. Toma, Tetrahedron, 2006, 62, 11311–11319; DOI: https://doi.org/10.1016/j.tet.2006.07.008.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Rodlovskaya.

Additional information

NMR spectra were recorded and elemental analyses were performed using financial support from the Ministry of Science and Higher Education of the Russian Federation on the equipment of the Center for Molecule Composition Studies of INEOS RAS.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 18-03-00892).

On the occasion of the 65th anniversary of the foundation of A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences.

Based on the materials of the International Conference “Chemistry of Organoelement Compounds and Polymers 2019” (November 18–22, 2019, Moscow, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1148–1150, June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodlovskaya, E.N., Vasnev, V.A. Thiophene-containing monomers for the synthesis of new polythiopheneferrocenes. Russ Chem Bull 69, 1148–1150 (2020). https://doi.org/10.1007/s11172-020-2881-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2881-9

Key words

Navigation