Skip to main content
Log in

Neodymium monochloride and monoallyl complexes {2-[Ph2P(O)]C6H4NC(But)N(2,6-Me2C6H3)}2NdR (R = Cl, CH2CH=CH2) with the tridentate amidinate ligand in the catalysis of ring-opening polymerization of cyclic esters

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The reaction of tridentate amidine 2-[Ph2P(O)]C6H4NHC(But)=N(2,6-Me2C6H3) (1) containing the side-chain donor group Ph2P=O with NdCl[N(SiMe3)2]2 (2) in a molar ratio of2:1 afforded the neodymium bis(amidinate) monochloride complex {2-[Ph2P(O)]-C6H4NC(But)N(2,6-Me2C6H3)}2NdCl (3). The neodymium bis(amidinate) monoallyl complex {2-[Ph2P(O)]C6H4NC(But)N(2,6-Me2C6H3)}2Nd(C3H5) (5) was synthesized by the elimination reaction between the tris-allyl derivative Nd(C3H5)3-(C4H8O2)2 (4) and amidine 1 in a molar ratio of 1:2 and by the exchange reaction between equimolar amounts of complex 3 and allylmagnesium bromide (C3H5MgBr). Complex 5 exhibits high activity as an initiator for the ring-opening polymerization of rac-lactide and ε-caprolactone, providing the conversion of up to 500 equivalents of the rac-lactide and ε-caprolactone within 5 and 2 min, respectively. The resulting polylactide samples have high number-average molecular weights ((47.38–93.02) · 103) and low polydispersity indices (Mw/Mn = 1.18–1.47). The polycaprolactone samples are characterized by high number-average molecular weights ((114.34–237.46) · 103) and a somewhat broadened molecular weight distribution (Mw/Mn = 1.87–2.40).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Auras, B. Harte, S. Selke, Macromol. Biosci., 2004, 4, 835.

    CAS  PubMed  Google Scholar 

  2. R. E. Drumright, P. R. Gruber, D. E. Henton, Adv. Mater., 2000, 12, 1841.

    CAS  Google Scholar 

  3. R. G. Sinclair, Pure Appl. Chem., 1996, A 33, 585.

    CAS  Google Scholar 

  4. X. Zhang, M. Fevre, G. O. Jones, R. M. Waymouth, Chem. Rev., 2018, 118, 839.

    CAS  PubMed  Google Scholar 

  5. R. Langer, Nature, 1998, 392, 5.

    CAS  PubMed  Google Scholar 

  6. K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, K. M. Shakesheff, Chem. Rev., 1999, 99, 3181.

    CAS  PubMed  Google Scholar 

  7. M. Jacoby, Chem. Eng. News, 2001, 79, 30.

    Google Scholar 

  8. T. Hayashi, Prog. Polym. Sci., 1994, 19, 663.

    CAS  Google Scholar 

  9. W. Amass, A. Amass, B. Tighe, Polym. Int., 1998, 47, 89.

    CAS  Google Scholar 

  10. Y. Ikada, H. Tsuji, Macromol. Rapid Commun., 2000, 21, 117.

    CAS  Google Scholar 

  11. J. C. Middlenton, A. J. Tipton, Biomaterials, 2000, 21, 2335.

    Google Scholar 

  12. R. Langer, Acc. Chem. Res., 2000, 33, 94.

    CAS  PubMed  Google Scholar 

  13. M. J. Jenkins, K. L. Harrison, M. M. C. G. Silva, M. J. Whitaker, K. M. Shakesheff, S. M. Howdle, Eur. Polym. J., 2006, 42, 3145.

    CAS  Google Scholar 

  14. D. W. Hutmacher, T. Schantz, I. Zein, K. W. Ng, S. H. Teoh, K. C. Tan, J. Biomed. Mater. Res., 2001, 55, 203.

    CAS  PubMed  Google Scholar 

  15. J. L. Hedrick, T. Magbitang, E. F. Connor, T. Glauser, W. Volksen, C. J. Hawker, V. Y. Lee, R. D. Miller, Chem. Eur. J., 2002, 8, 3308.

    CAS  PubMed  Google Scholar 

  16. A.-C. Albertsson, I. K. Varma, Biomacromolecules, 2003, 4, 1466.

    CAS  PubMed  Google Scholar 

  17. O. Dechy-Cabaret, B. Martin-Vaca, Didier Bourissou, Chem. Rev., 2004, 104, 6147

    CAS  PubMed  Google Scholar 

  18. D. M. Lyubov, A. O. Tolpygin, A. A. Trifonov, Coord. Chem. Rev., 2019, 392, 83.

    CAS  Google Scholar 

  19. A. A. Trifonov, Russ. Chem. Rev., 2007, 76, 1122.

    Google Scholar 

  20. A. A. Trifonov, Coord. Chem. Rev., 2010, 254, 1327.

    CAS  Google Scholar 

  21. M. N. Bochkarev, L. N. Zakharov, G. S. Kalinina, Organoderivatives of Rare Earth Elements, Kluwer, Dordrecht, 1995.

    Google Scholar 

  22. F. T. Edelmann, Adv. Organomet. Chem., 2008, 57, 183.

    CAS  Google Scholar 

  23. A. O. Tolpygin, T. A. Glukhova, A. V. Cherkasov, G. K. Fukin, D. V. Aleksanyan, D. Cui, A. A. Trifonov, Dalton Trans., 2015, 44, 16465.

    CAS  PubMed  Google Scholar 

  24. A. O. Tolpygin, O. A. Linnikova, T. A. Glukhova, A. V. Cherkasov, G. K. Fukin, A. A. Trifonov, RSC Adv., 2016, 6, 17913.

    CAS  Google Scholar 

  25. X. Zhang, C. Wang, M. Xue, Y. Zhang, Y. Yao, Q. Shen, J. Organomet. Chem., 2012, 713, 182.

    CAS  Google Scholar 

  26. A. O. Tolpygin, O. A. Linnikova, T. A. Kovylina, A. V. Cherkasov, G. K. Fukin, A. A. Trifonov, Russ. Chem. Bull., 2019, 68, 32.

    CAS  Google Scholar 

  27. M. Tsutsui, N. Ely, J. Am. Chem. Soc., 1975, 97, 3551.

    CAS  Google Scholar 

  28. L. N. Jende, C. O. Hollfelder, C. Maichle-Mössmer, R. Anwander, Organometallics, 2015, 34, 32.

    CAS  Google Scholar 

  29. D. Martin, J. Kleemann, E. Abinet, T. P. Spaniol, L. Maron, J. Okuda, Eur. J. Inorg. Chem., 2013, 22–23, 3987.

    Google Scholar 

  30. L. F. Sánchez-Barba, D. L. Hughes, S. M. Humphrey, M. Bochmann, Organometallics, 2005, 24, 3792.

    Google Scholar 

  31. S. Fadlallah, M. Terrier, C. Jones, P. Roussel, F. Bonnet, M. Visseaux, Organometallics, 2016, 35, 456.

    CAS  Google Scholar 

  32. S. Fadlallah, J. Jothieswaran, F. Capet, F. Bonnet, M. Visseaux, Chem. Eur. J., 2017, 23, 15644.

    CAS  PubMed  Google Scholar 

  33. T. J. Woodman, M. Schormann, D. L. Hughes, M. Bochmann, Organometallics, 2004, 23, 2972.

    CAS  Google Scholar 

  34. M. D. Taylor, C. P. Carter, J. Inorg. Nucl. Chem., 1962, 24, 387.

    CAS  Google Scholar 

  35. L. H. Sommer, R. M. Murch, F. A. Mitch, J. Am. Chem. Soc., 1954, 76, 1619.

    CAS  Google Scholar 

  36. R. Taube, H. Windsch, S. Maiwald, H. Hemling, H. Schumann, J. Organomet. Chem., 1996, 513, 49.

    CAS  Google Scholar 

  37. R. Taube, H. Windsch, H. Weieeenborn, H. Hemling, H. Schumann, J. Organomet. Chem., 1997, 548, 229.

    CAS  Google Scholar 

  38. L. F. Sanchez-Barba, D. L. Hughes, S. M. Humphrey, M. Bochmann, Organometallics, 2005, 24, 3792.

    CAS  Google Scholar 

  39. M. Save, M. Schappacher, A. Soum, Macromol. Chem. Phys., 2002, 203, 889.

    CAS  Google Scholar 

  40. Bruker, APEX3, Bruker AXS Inc., Madison, Wisconsin, USA, 2015.

  41. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Cryst., 2015, 48, 3.

    CAS  Google Scholar 

  42. G. M. Sheldrick, Acta Cryst., 2015, C71, 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Trifonov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences I. L. Eremenko on the occasion of his 70th birthday.

This study was financially supported by the Russian Foundation for Basic Research (Project No. 17-03-00253_a). The X-ray diffraction study of complexes 3 and 5 was performed within the framework of the State assignment.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1114–1121, June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolpygin, A.O., Linnikova, O.A., Kovylina, T.A. et al. Neodymium monochloride and monoallyl complexes {2-[Ph2P(O)]C6H4NC(But)N(2,6-Me2C6H3)}2NdR (R = Cl, CH2CH=CH2) with the tridentate amidinate ligand in the catalysis of ring-opening polymerization of cyclic esters. Russ Chem Bull 69, 1114–1121 (2020). https://doi.org/10.1007/s11172-020-2876-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2876-6

Key words

Navigation