Skip to main content
Log in

Chitin-based magnetic composite for the removal of contaminating substances from aqueous media

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A method of obtaining multipurpose magnetic chitin, which combines the magnetic properties of magnetite and the adsorption properties of polysaccharide, was proposed. The possibility of using chitin-(CT) and chitosan (CS)-containing magnetic composites for the adsorption of inorganic ions CoII and CrVI and organic substances (2- and 4-nitrophenols) from aqueous media was analyzed. It was shown that the adsorption capacity of magnetic chitin with respect to CoII and CrVI ions reached 41 mg g−1 and 15 mg g−1, respectively. The maximum adsorption capacity for 4-nitrophenol (19 mg g−1 per CT-containing magnetic composite or 56 mg g−1 per chitin component) was about three times higher than for 2-nitrophenol. The obtained adsorbent Fe3O4/CT is environmentally friendly and reusable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Environmental Water: Advances in Treatment, Remediation and Recycling, Eds V. Gupta, I. Ali, Elsevier, Amsterdam, 2013.

    Google Scholar 

  2. D. Mehta, S. Mazumdarb, S. K. Singha, J. Water Process Eng., 2015, 7, 244.

    Google Scholar 

  3. I. Hamed, F. Ozogul, J. M. Regenstein, Trends Food Sci. Technol., 2016, 48, 40.

    CAS  Google Scholar 

  4. I. Anastopoulos, A. Bhatnagar, D. N. Bikiaris, G. Z. Kyzas, Int. J. Mol. Sci., 2017, 18, 114.

    PubMed Central  Google Scholar 

  5. D. Liu, Y. Zhu, Z. Li, D. Tian, L. Chen, P. Chen, Carbohydr. Polym., 2013, 98, 483.

    CAS  PubMed  Google Scholar 

  6. S. S. Saini, G. J. Copello, A. L. J. Rao, Anal. Methods, 2017, 9, 4143.

    CAS  Google Scholar 

  7. J. Skujins, A. Pukite, A. D. McLaren, Mol. Cell. Biochem., 1973, 2, 221.

    CAS  PubMed  Google Scholar 

  8. V. E. Tikhonov, L. V. Lopez-Llorca, J. Salinas, H.-B. Jansson, Fungal Genet. Biol., 2002, 35, 67.

    CAS  PubMed  Google Scholar 

  9. O. V. Melchakova, A. V. Pestov, N. V. Pechishcheva, K. Yu. Shunyaev, Russ. Chem. Bull., 2019, 68, 521.

    CAS  Google Scholar 

  10. L. A. Zemskova, D. Kh. Shlyk, A. V. Voit, N. N. Barinov, Russ. Chem. Bull., 2019, 68, 9.

    CAS  Google Scholar 

  11. D. V. Pryazhnikov, I. V. Kubrakova, O. N. Grebneva-Balyuk, T. A. Maryutina, Mendeleev Commun., 2019, 29, 675.

    CAS  Google Scholar 

  12. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, E. L. Vander, R. Muller, Chem. Rev., 2008, 108, 2064.

    CAS  PubMed  Google Scholar 

  13. N. A. Frey, S. Peng, K. Cheng, S. Sun, Chem. Soc. Rev., 2009, 38, 2532.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. M. K. Nasra, M. M. Mohamed, M. A. Elblbesy, B. A. Hefney, J. Biomater. Nanobiotechnol., 2011, 2, 193.

    Google Scholar 

  15. N. Samoilova, V. Tikhonov, M. Krayukhina, I. Yamskov, J. Appl. Polym. Sci., 2014, 131, Art. ID 39663; DOI:https://doi.org/10.1002/app.39663.

  16. P. N. Dave, L. V. Chopda, J. Nanotechnol., 2014, 2014, Art. ID 398569; DOI: https://doi.org/10.1155/2014/398569.

  17. P. Yuan, M. Fan, D. Yang, H. He, D. Liu, A. Yuan, J. X. Zhu, T. H. Chen, J. Hazardous Mater., 2009, 166, 821.

    CAS  Google Scholar 

  18. M. Zarghani, B. Akhlaghinia, RSC Adv., 2016, 6, 31850.

    CAS  Google Scholar 

  19. K. S. Wong, K. H. Wong, S. Ng, W. K. Chung, P. K. Wong, Water Sci. Technol., 2007, 56, 135.

    CAS  PubMed  Google Scholar 

  20. I. Safarik, Biotechnol. Tech., 1991, 5, 111.

    CAS  Google Scholar 

  21. H. Tang, W. Zhou, A. Lu, L. Zhang, J. Mater. Sci., 2014, 49, 123.

    CAS  Google Scholar 

  22. N. A. Samoilova, M. A. Krayukhina, Carbohydr. Polym., 2019, 216, 107.

    CAS  PubMed  Google Scholar 

  23. U. C. Otuonye, J. T. Barminas, A. M. Magomya, E. A. Kamba, C. Andrew, Sci.-Afric J. Sci. Issues, Res. Essays, 2014, 2, 128.

    Google Scholar 

  24. R. Karthik, S. Meenakshi, Synth. Metals, 2014, 198, 181.

    CAS  Google Scholar 

  25. K. Bourikas, C. Kordulis, J. Vakros, A. Lycourghiotis, Adv. Colloid Interface Sci., 2004, 110, 97.

    CAS  PubMed  Google Scholar 

  26. E. A. Moawed, M. A. El-Ghamry, M. A. El-Hagrasy, M. F. El-Shahat, J. Association Arab Universities for Basic Appl. Sci., 2017, 23, 43.

    Google Scholar 

  27. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Nitrophenols: 2-Nitrophenol, 4-Nitrophenol, Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services, Atlanta (GA), 1992; https://www.atsdr.cdc.gov/ToxProfiles/tp50.pdf.

  28. V. K. Gupta, N. Atar, M. L. Yola, U. Zafer, L. Uzun, Water Res., 2014, 48, 210.

    CAS  PubMed  Google Scholar 

  29. Anaityical Chemistry of Minerals, Eds A. I. Samchuk, A. T. Pilipenko, VNU Science Press BV, Utrecht, The Netherlands, 1987.

    Google Scholar 

  30. B. Prabhu, M. B. Saidutta, M. S. Kini, Int. J. Appl. Eng. Res., 2017, 12, 4072.

    Google Scholar 

  31. A. Labidi, A.M. Salaberria, S. C. M. Fernandes, J. Labidi, M. Abderrabba, J. Taiwan-Institute Chem. Eng., 2016, 65, 140.

    CAS  Google Scholar 

  32. D. Saravanan, R. Hemalatha, P. N. Sudha, Der Pharma Chem., 2011, 3, 406.

    CAS  Google Scholar 

  33. A. Baran, E. Bicak, S. H. Baysal, S. Onal, Biores. Technol., 2006, 98, 661.

    Google Scholar 

  34. W. S. W. Ngah, C. S. Endud, R. Mayanar, React. Funct. Polym., 2002, 50, 181.

    CAS  Google Scholar 

  35. P. Sar, S. K. Kazy, R. K. Asthana, S. P. Singh, Int. Biodeterior. Biodegrad., 1999, 44, 101.

    CAS  Google Scholar 

  36. R. A. A. Muzzarelli, Chitin, Pergamon Press, Oxford, 1977.

    Google Scholar 

  37. Y. Kawamura, M. Mitsuhashi, H. Tanibe, H. Yoshida, Ind. Eng. Chem. Res., 1993, 32, 386.

    CAS  Google Scholar 

  38. Z. L. Yaneva, B. K. Koumanova, N. V. Georgieva, J. Chem., 2013, 2013, Art. ID 517631; DOI: https://doi.org/10.1155/2013/517631.

  39. M. R. Ghosh, S. P. Mishra, J. Mater. Environ. Sci., 2016, 7, 3050.

    CAS  Google Scholar 

  40. O. Ozsoy, M. Bekbolet, Environ. Sci. Pollut. Res. Int., 2018, 25, 3020; DOI: https://doi.org/10.1007/s11356-015-4103-9.

    CAS  PubMed  Google Scholar 

  41. H. Yaacoubi, Z. Songlin, M. Mouflih, M. Gourai, S. Sebti, Mediter. J. Chem., 2015, 4, 289.

    CAS  Google Scholar 

  42. F. Moattar, S. Hayeripour, Int. J. Environ. Sci. Technol., 2004, 1, 45.

    Google Scholar 

  43. P. Purushotham, P. V. P. S. Arun, J. S. S. Prakash, A. R. Podile, PLoS ONE, 2012, 7, e36714.

    PubMed  PubMed Central  Google Scholar 

  44. M. Yahyaei, F. Mehrnejad, H. Naderi-manesh, A. H. Rezayan, Carbohydrate Polym., 2018, 191, 191.

    CAS  Google Scholar 

  45. R. Nisticö, Res. Chem. Intermed., 2017, 43, 6911.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Samoilova.

Additional information

The authors are grateful to V. E. Tikhonov for valuable advice and comments on the work, and Z. S. Klemenkova for recording the IR spectra.

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation and carried out using the equipment of the Center for molecule composition studies of the A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences.

On the occasion of the 65th anniversary of the foundation of A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences.

Based on the materials of the International Conference “Chemistry of Organoelement Compounds and Polymers 2019” (November 18–22, 2019, Moscow, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1157–1164, June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoilova, N.A., Krayukhina, M.A. Chitin-based magnetic composite for the removal of contaminating substances from aqueous media. Russ Chem Bull 69, 1157–1164 (2020). https://doi.org/10.1007/s11172-020-2883-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2883-7

Key words

Navigation