Skip to main content
Log in

Formation of Isotope Parameters (δD, δ18O, and d) of Glaciers and Water Runoff from Severny Island of the Novaya Zemlya Archipelago

  • MARINE CHEMISTRY
  • Published:
Oceanology Aims and scope

Abstract

Isotope studies (δD and δ18O) were performed for the glaciers of Severny Island (Novaya Zemlya Archipelago). The studied glaciers were characterized by narrow range-of δD and δ18O values (from –15.4 to –17.6 ‰ and from –110.9 to –127.1‰, respectively). The samples of glacier ice form a linear trend within the δD–δ18O coordinates with low slope (s < 7). The isotope signature of water runoff from Severny Island point mainly to the glacial origin of the waters. The isotope parameters of glacial ice from the Novaya Zemlya Archipelago deviated from the values expected for western transfer of air masses under the latitudinal effect compared to glacial ice from other Arctic archipelagoes (Svalbard, Severnaya Zemlya, and Franz Josef Land). These parameters were similar to those for atmospheric precipitation over the continent near the town of Amderma. The slope of the trend, deuterium excess values, and narrow variation range of δD and δ18O values of ice might be caused by seasonal freezing of meltwater in firn layers within the closed system condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Novaya Zemlya Archipelago and the Kara Sea: Geochemistry, Glaciology, and Radiation, Ed. by M. V. Flint (APR, Moscow, 2018) [in Russian].

  2. E. O. Dubinina, S. A. Kossova, A. Yu. Miroshnikov, and R. V. Fyaizullina, “Isotope parameters (δD, δ18O) and sources of freshwater input to Kara Sea,” Oceanology (Engl. Transl.) 57, 31–40 (2017).

  3. A. N. Krenke, Mass Exchange in Glacial Systems in the USSR (Gidrometeoizdat, Leningrad, 1982) [in Russian].

    Google Scholar 

  4. V. N. Mikhalenko, S. S. Kutuzov, A. A. Ekaikin, et al., “Isotope composition of snow and ice on glaciers of the Novaya Zemlya Archipelago,” Led Sneg 57 (3), 293–306 (2017).

    Google Scholar 

  5. I. E. Frolov, I. M. Ashik, H. Kassens, et al., “Anomalous variations in the thermohaline structure of the Arctic Ocean,” Dokl. Earth Sci. 429, 1567–1569 (2009).

    Article  Google Scholar 

  6. O. P. Chizhov, V. S. Koryakin, N. V. Davidovich, et al., Glaciation of the Novaya Zemlya Archipelago (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  7. A. A. Andreev, V. N. Nikolaev, D. Yu. Bolshiyanov, and V. N. Petrov, “Pollen and isotope investigations of an ice core from Vavilov ice cap, October Revolution Island, Severnaya Zemlya Archipelago, Russia,” Geogr., Phys. Quat. 51 (3), 379–389 (1997).

    Google Scholar 

  8. S. M. Arkhipov, R. A. Vaykmyae, E. V. Vasilenko, et al., “Soviet glaciological investigation on Austfonna, Nordaustlandet, Svalbard in 1984–1985,” Polar Geogr. Geol. 11 (1), 25–49 (1987).

    Article  Google Scholar 

  9. S. M. Arkhipov, V. M. Kotlyakov, Ya.-M. K. Punning, et al., Deep drilling of glaciers: Russian projects in the Arctic (1975–1995), 2008. https://doi.org/10.1594/PANGAEA.707363

  10. D. Bauch, H. Erlenkeuser, V. Stanovoy, et al., “Freshwater distribution and brine waters in the southern Kara Sea in summer 1999 as depicted by δ18O results,” in Siberian River Run-Off in the Kara Sea, Ed. by R. Stein (Elsevier, Amsterdam, 2003), pp. 73–90.

    Google Scholar 

  11. D. Bauch, H. Erlenkeuser, and N. Andersen, “Water mass processes on Arctic shelves as revealed from 18O of H2O,” Global Planet. Change 48, 165–174 (2005).

    Article  Google Scholar 

  12. D. Bauch, P. Schlosser, and R. F. Fairbanks, “Freshwater balance and the sources of deep and bottom waters in the Arctic Ocean inferred from the distribution of H218O,” Prog. Oceanogr. 35, 53–80 (1995).

    Article  Google Scholar 

  13. H. Craig and L. Gordon, “Deuterium and oxygen-18 variations in the ocean and the marine atmosphere,” in Proceedings of the Conference “Stable Isotopes in Oceanographic Studies and Paleotemperatures,” Spoletto, Italy, Ed. by E. V. Tongiogi and F. Lishie (Consiglio Nazionale Delle Ricerche Laboratorio di Geologia Nucleare, Pisa, 1965), pp. 9–130.

  14. W. Dansgaard, “Sable isotopes in precipitation,” Tellus 19, 435–463 (1964).

    Google Scholar 

  15. Draxler R. R. and Rolph, G. D. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model Access via NOAA ARL READY Website (NOAA Air Resources Laboratory, Silver Spring, MD, 2011). http://ready.arl.noaa.gov/HYSPLIT.php.

    Google Scholar 

  16. E. O. Dubinina and L. Z. Lakshtanov, “A kinetic model of exchange in dissolution-precipitation processes,” Geochim. Cosmochim. Acta 61, 2265–2273 (1997).

    Article  Google Scholar 

  17. S. Epstein, R. P. Sharp, and A. J. Gow, “Six-year record of oxygen and hydrogen isotope variations in South Pole firn,” J. Geophys. Res. 70, 1809–1814 (1965).

    Article  Google Scholar 

  18. I. Friedman, C. Benson, and J. Gleason, “Isotopic changes during snow metamorphism,” in Stable Isotope Geochemistry: A Tribute to Samuel Epstein, Geochemical Society Special Publication no. 3 (Geochemical Society, San Antonio, 1991), pp. 211–221.

  19. F. G. Gordienko, V. Kotlyakov, Ya.-M. K. Punning, and R. Vaikmaye, “Study of 200-m core from the Lomonosov Ice Plateau on Spitsbergen and the paleoclimatic implications,” Polar Geogr. Geol. 5, 242–251 (1981).

    Article  Google Scholar 

  20. R. M. Holmes, J. W. McClelland, B. J. Peterson, et al., “Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas,” Estuaries Coasts, (2011). https://doi.org/10.10007/s12237-011-9386-6

  21. IAEA/WMO, Global Network of Isotopes in Precipitation, GNIP Database, 2019. https://nucleus.iaea.org/ wiser.

  22. E. Isaksson, M. Hermanson, S. Hicks, et al., “Ice cores from Svalbard–useful archives of past climate and pollution history,” Phys. Chem. Earth, Parts A/B/C 28, 1217–1228 (2003).

    Article  Google Scholar 

  23. J. Jouzel and R. A. Souchez, “Melting-refreezing at the glacier sole and the isotopic composition of the ice,” J. Glaciol. 28 (98), 35–42 (1982).

    Article  Google Scholar 

  24. D. Kondrik, A. V. Popov, and A. Rubehenya, “Specific features of the transport of freshwater anomalies in the Arctic Ocean,” Russ. Meteorol. Hydrol. 41, 285–292 (2016).

    Article  Google Scholar 

  25. V. M. Kotlyakov, S. M. Arkhipov, K. A. Henderson, and O. V. Nagornov, “Deep drilling of glaciers in Eurasian Arctic as a source of paleoclimatic records,” Quat. Sci. Rev. 23, 1371–1390 (2004).

    Article  Google Scholar 

  26. G. Laukert, M. Makhotin, M. V. Petrova, et al., “Water mass transformation in the Barents Sea inferred from radiogenic neodymium isotopes, rare earth elements and stable oxygen isotopes,” Chemge, (2018). https://doi.org/10.1016/j.chemgeo.2018.10.002

    Google Scholar 

  27. M. Lehmann and U. Siegenthaler, “Equilibrium oxygen- and hydrogen-isotope fractionation between ice and water,” J. Glaciol. 37 (125), 23–26 (1991).

    Article  Google Scholar 

  28. M. O. Leibman, S. M. Arkhipov, D. D. Perednya, et al., “Geochemical properties of the water–snow–ice complexes in the area of Shokalsky glacier, Novaya Zemlya, in relation to tabular ground-ice formation,” Ann. Glaciol. 42, 249–254 (2005).

    Article  Google Scholar 

  29. A. K. Melkonian, M. J. Willis, M. E. Pritchard, and A. J. Stewart, “Recent changes in glacier velocities and thinning at Novaya Zemlya,” Remote Sens. Environ. 174, 244–257 (2016).

    Article  Google Scholar 

  30. T. Opel, D. Fritzsche, and H. Meyer, “Eurasian Arctic climate over the past millennium as recorded in the Akad-emii Nauk ice core (Severnaya Zemlya),” Clim. Past. 9, 2379–89 (2013).

    Article  Google Scholar 

  31. T. Opel, D. Fritzsche, H. Meyer, et al., “115 year ice-core data from Akademii Nauk ice cap, Severnaya Zemlya: high-resolution record of Eurasian Arctic climate change,” J. Glaciol. 55 (189), 21–31 (2009).

    Article  Google Scholar 

  32. S. Pfahl and H. Sodemann, “What controls deuterium excess in global precipitation?” Clim. Past. 10, 771–781 (2014).

    Article  Google Scholar 

  33. W. T. Pfeffer, A. A. Arendt, A. Bliss, et al., “The Randolph Glacier Inventory: a globally complete inventory of glaciers,” J. Glaciol. 60 (221), 537–552 (2014).

    Article  Google Scholar 

  34. J. C. Posey and H. A. Smith, “The equilibrium distribution of light and heavy waters in a freezing mixture,” J. Am. Chem. Soc. 79, 555–557 (1957).

    Article  Google Scholar 

  35. A. I. Shiklomanov, R. M. Holmes, J. W. McClelland, et al., Discharge dataset, Version 20180523, Arctic Great Rivers Observatory, 2018. https://www.arcticrivers.org/data.

  36. R. A. Sommerfeld, I. Friedman, and M. Nilles, “The fractionation of natural isotopes during temperature gradient metamorphism of snow,” in Seasonal Snowcovers: Physics, Chemistry, Hydrology, NATO ASI Series vol. 211, Ed. by H. G. Jones and W. J. Orville-Thomas (Springer-Verlag, Dordrecht, 1987).

    Google Scholar 

  37. T. Toyota, I. J. Smith, A. J. Gough, et al., “Oxygen isotope fractionation during the freezing of sea water,” J. Glaciol. 59 (216), 697–710 (2013).

    Article  Google Scholar 

  38. R. Vaikmaye and Ya.-M. K. Punning, “Isotope and geochemical investigations on the Vavilov Glacier Dome, Severnaya Zemlya,” Polar Geogr. Geol. 8 (1), 73–79 (1984).

    Article  Google Scholar 

  39. Weather and climate informational portal, 2004–2019. http://www.pogodaiclimat.ru.

Download references

ACKNOWLEDGMENTS

The authors thank Academician of the RAS M.V. Flint, head of both expeditions, as well as to the crews of the R/V Akademik Mstislav Keldysh and R/V Professor Shtokman for providing favorable conditions for collecting the samples on which the present study were based. The authors are especially grateful to I. Lavrentiev, A. Kudikov, and L. Radun for sampling at glaciers.

Funding

The isotope studies were supported by the Russian Foundation for Basic Research (project no. 18-05-00740). The development of approaches for data interpretation, as well as modeling calculations, were partially supported by the Russian Scientific Foundation (project no. 18-17-00089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Dubinina.

Additional information

Translated by A. Rylova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinina, E.O., Chizhova, J.N., Kossova, S.A. et al. Formation of Isotope Parameters (δD, δ18O, and d) of Glaciers and Water Runoff from Severny Island of the Novaya Zemlya Archipelago. Oceanology 60, 174–188 (2020). https://doi.org/10.1134/S0001437020010099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437020010099

Keywords:

Navigation