Skip to main content
Log in

Uniqueness for the inverse boundary value problem with singular potentials in 2D

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper we consider the inverse boundary value problem for the Schrödinger equation with potential in \(L^p\) class, \(p>4/3\). We show that the potential is uniquely determined by the boundary measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amrein, W., Berthier, A., Georgescu, V.: \({L}^p\)-inequalities for the laplacian and unique continuation. Annales de l’institut Fourier 31(3), 153–168 (1981)

    MathSciNet  MATH  Google Scholar 

  2. Astala, K., Iwaniec, T., Martin, G.: Elliptic partial differential equations and quasiconformal mappings in the plane. In: Princeton Mathematical Series, vol. 48. Princeton University Press, Princeton (2009)

  3. Astala, K., Päivärinta, L.: Calderón’s inverse conductivity problem in the plane. Ann. Math. (2) 163(1), 265–299 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Blåsten, E.: On the Gel’fand–Calderón inverse problem in two dimensions. Doctoral Thesis, University of Helsinki, Finland (2013)

  5. Blåsten, E., Imanuvilov, O.Y., Yamamoto, M.: Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials. Inverse Probl Imaging 9(3), 709–723 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Brown, R., Uhlmann, G.: Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions. Commun. Partial Differ. Equ. 22(5–6), 1009–1027 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Bukhgeim, A.L.: Recovering a potential from Cauchy data in the two-dimensional case. J. Inverse Ill-Posed Probl. 16(1), 19–33 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Carstea, C.I., Wang, J.-N.: Uniqueness for the two dimensional calderón’s problem with unbounded conductivities. Ann. Sc. Norm. Super. Pisa Cl. Sci. 18(4), 1459–1482 (2018)

  9. Ferreira, D.D.S., Kenig, C.E., Salo, M.: Determining an unbounded potential from cauchy data in admissible geometries. Commun. Partial Differ. Equ. 38(1), 50–68 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Haberman, B.: Unique determination of a magnetic Schrödinger operator with unbounded magnetic potential from boundary data. Int. Math. Res. Not. 4, 1080–1128 (2016)

    MATH  Google Scholar 

  11. Imanuvilov, O.Y., Yamamoto, M.: Inverse boundary value problem for Schrödinger equation in two dimensions. SIAM J. Math. Anal. 44(3), 1333–1339 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Jerison, D., Kenig, C.E.: Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. Math. 121(3), 463–488 (1985)

    MathSciNet  MATH  Google Scholar 

  13. Lakshtanov, E., Vainberg, B.: Recovery of \({L}^p\)-potential in the plane. J. Inverse Ill-Posed Probl. 25, 633–651 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Nachman, A.I.: Global uniqueness for a two-dimensional inverse boundary value problem. Ann. Math. (2) 143(1), 71–96 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Nachman, A.I., Regev, I., Tataru, D.I.: A nonlinear plancherel theorem with applications to global well-posedness for the defocusing davey-stewartson equation and to the inverse boundary value problem of calderón. arXiv:1708.04759v2 [math.AP] (2017)

  16. Saut, J., Scheurer, B.: Un théorème de prolongement unique pour des opérators elliptiques dont les coefficients ne sont pas localement bornés. C.R.A.S. Paris 290A, 595–598 (1980)

    MATH  Google Scholar 

  17. Serov, V.S., Päivärinta, L.: New estimates of the Green–Faddeev function and recovering of singularities in the two-dimensional Schrödinger operator with fixed energy. Inverse Probl. 21(4), 1291–1301 (2005)

    MATH  Google Scholar 

  18. Sun, Z.: On an inverse boundary value problem in two dimensions. Commun. Partial Differ. Equ. 14, 1101–1113 (1989)

    MathSciNet  MATH  Google Scholar 

  19. Sun, Z.: The inverse conductivity problem in two dimensions. J. Differ. Equ. 87, 227–255 (1990)

    MathSciNet  MATH  Google Scholar 

  20. Sun, Z., Uhlmann, G.: Generic uniqueness for an inverse boundary value problem. Duke Math. J. 62, 131–155 (1991)

    MathSciNet  MATH  Google Scholar 

  21. Sun, Z., Uhlmann, G.: Inverse scattering for singular potentials in two dimensions. Trans. Am. Math. Soc. 338(1), 363–374 (1993)

    MathSciNet  MATH  Google Scholar 

  22. Sun, Z., Uhlmann, G.: Recovery of singularities for formally determined inverse problems. Commun. Math. Phys. 153, 431–445 (1993)

    MathSciNet  MATH  Google Scholar 

  23. Sylvester, J., Uhlmann, G.: A uniqueness theorem for an inverse boundary value problem in electrical prospection. Commun. Pure Appl. Math. 39, 91–112 (1986)

    MathSciNet  MATH  Google Scholar 

  24. Vekua, I.N.: Generalized Analytic Functions. Pergamon Press, London (1962). Translation from the 1959 Russian edition

    MATH  Google Scholar 

Download references

Acknowledgements

Leo Tzou was partially supported by Australian Research Council DP190103451 and DP190103302. Jenn-Nan Wang was supported in part by MOST 105-2115-M-002-014-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenn-Nan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Cauchy operator and integration by parts

We define the two fundamental tools for solving the two-dimensional inverse problem of the Schrödinger operator in this section: the Cauchy operators and an integration by parts formula for the Cauchy operator conjugated by an exponential. These were used by Bukhgeim [7] for solving the problem.

Definition 6.1

Let \(u \in \mathscr {E}'(\mathbb {R}^2)\) be a compactly supported distribution. Then we define the Cauchy operators by

$$\begin{aligned} {\overline{\partial }^{-1}}u = \frac{1}{\pi z} *u, \qquad {\partial ^{-1}}u = \frac{1}{\pi \overline{z}} *u. \end{aligned}$$

Remark 6.2

The notations \(\overline{\partial }^{-1}\) and \(\partial ^{-1}\) cause no problems because \(1/(\pi z)\) and \(1/(\pi \overline{z})\) are the fundamental solutions to the operators \(\overline{\partial } = (\partial _1 + i\partial _2)/2\) and \(\partial = (\partial _1 - i\partial _2)/2\).

Lemma 6.3

Let \(\tau > 0\), \(z_0 \in \mathbb {C}\) and \(\Phi (z) = (z-z_0)^2\). Let \(\psi \in C^\infty _0(\mathbb {R}^2)\) with \(\psi \equiv 1\) in a neighbourhood of 0, and write

$$\begin{aligned} \psi _\tau (z) = \psi ( \tau ^{1/2}(z-z_0) ), \qquad h(z) = \frac{1 - \psi _\tau (z) }{\overline{z}-\overline{z_0}}. \end{aligned}$$

Then for \(a \in C^\infty _0(\mathbb {R}^2)\) we have the integration by parts formula

$$\begin{aligned}&{\overline{\partial }^{-1}}(e^{-i\tau (\Phi + \overline{\Phi })}a) = {\overline{\partial }^{-1}}\big (e^{-i\tau (\Phi + \overline{\Phi })} \psi _\tau a\big ) \\&\qquad - \frac{1}{2i\tau } \big ( e^{-i\tau (\Phi + \overline{\Phi })} h a - {\overline{\partial }^{-1}}(e^{-i\tau (\Phi + \overline{\Phi })} \overline{\partial }h a) - {\overline{\partial }^{-1}}( e^{-i\tau (\Phi + \overline{\Phi })} h \overline{\partial }a) \big ). \end{aligned}$$

If we had set \(h(z) = (1-\psi _\tau (z))/(z-z_0)\) instead then

$$\begin{aligned}&{\partial ^{-1}}(e^{-i\tau (\Phi + \overline{\Phi })} a) = {\partial ^{-1}}\big (e^{-i\tau (\Phi + \overline{\Phi })} \psi a\big )\\&\qquad - \frac{1}{2i\tau }\big ( e^{-i\tau (\Phi + \overline{\Phi })} h a - {\partial ^{-1}}(e^{-i\tau (\Phi + \overline{\Phi })} \partial h a) - {\partial ^{-1}}(e^{-i\tau (\Phi + \overline{\Phi })} h \partial a)\big ). \end{aligned}$$

Proof

The proof follows by differentiating \(e^{-i\tau (\Phi +\overline{\Phi })} h a\) and noting that by Remark 6.2 the operators \({\overline{\partial }^{-1}}\overline{\partial }\) and \({\partial ^{-1}}\partial \) are the identity on compactly supported distributions.

Lemma 6.4

Let \(X \subset \mathbb {R}^2\) be a bounded domain and \(1<p<\infty \). Then the Cauchy operators \({\overline{\partial }^{-1}}\) and \({\partial ^{-1}}\) are bounded \(L^p(X) \rightarrow W^{1,p}(X)\).

Proof

If \(f\in L^p(X)\) we extend it by zero to \(\mathbb {R}^2{\setminus } X\) to create a compactly supported distribution and thus \({\overline{\partial }^{-1}}f\) is well defined by Definition 6.1. The convolution kernel \(1/(\pi z)\) is locally integrable, so by Young’s inequality

$$\begin{aligned} \left\Vert {\overline{\partial }^{-1}}f \right\Vert _{L^p(X)} \le C \left\Vert f \right\Vert _{L^p(X)}, \end{aligned}$$

because in essence \({\overline{\partial }^{-1}}f\) has the same values in X as the convolution of f with the kernel \(\chi _{X-X}(z)/(\pi z)\), where \(X-X = \{ z \in \mathbb {R}^2 \mid z = z_1-z_2, z_j \in \mathbb {R}^2\}\).

For the derivatives note that by Remark 6.2 we have \(\overline{\partial }{\overline{\partial }^{-1}}f = f\). On the other hand \(\partial {\overline{\partial }^{-1}}f = \Pi f\) which is the Beurling transform, and hence bounded \(L^p(X) \rightarrow L^p(X)\). For reference see for example Section 4.5.2 in [2] or [24] for a more classical approach. \(\square \)

Appendix 2: Cut-off function estimates

This section contains all the technical cut-off function construction and norm estimates used in the paper.

Lemma 7.1

Let \(\psi \in C^\infty _0(\mathbb {R}^2)\). For \(z_0\in \mathbb {R}^2\) and \(\tau >0\) write \(\psi _\tau (z) = \psi ( \tau ^{1/2}(z-z_0) )\). Then, given any vector \(v\in \mathbb {C}^2\), we have

$$\begin{aligned} \left\Vert \psi _\tau \right\Vert _{L^p(\mathbb {R}^2)} = \left\Vert \psi \right\Vert _{L^p(\mathbb {R}^2)} \tau ^{-1/p}, \qquad \left\Vert v\cdot \nabla \psi _\tau \right\Vert _{L^p(\mathbb {R}^2)} = \left\Vert v\cdot \nabla \psi \right\Vert _{L^p(\mathbb {R}^2)} \tau ^{1/2-1/p} \end{aligned}$$

for \(1\le p \le \infty \).

Proof

This follows directly from the scaling properties and translation invariance of \(L^p\)-norms in \(\mathbb {R}^2\). \(\square \)

Lemma 7.2

Let \(\tau >0\) and set \(\mathbb {R}^2_\tau = \mathbb {R}^2 {\setminus } B(0,\tau ^{-1/2})\). Then

$$\begin{aligned} \left\Vert z^{-a} \right\Vert _{L^p(\mathbb {R}^2_\tau )} = \left( \frac{2\pi }{ap-2} \right) ^{1/p} \tau ^{a/2-1/p} \end{aligned}$$

for \(a>0\) and \(2/a<p\le \infty \).

Proof

This is a direct computation using the polar coordinates integral transform \(\int _{\mathbb {R}^2_\tau } \ldots dz = \int _{\tau ^{-1/2}}^\infty \int _{\mathbb S^1} \ldots d\sigma (\theta ) r dr\), with \(z = r\theta \). \(\square \)

Lemma 7.3

Let \(\psi \in C^\infty _0(\mathbb {R}^2)\) be a test function supported in B(0, 2) with \(0\le \psi \le 1\) and \(\psi \equiv 1\) in B(0, 1). For \(\tau >0\) and \(z_0\in \mathbb {R}^2\) write \(\psi _\tau (z) = \psi ( \tau ^{1/2}(z-z_0) )\). Let \(h(z) = (1 - \psi _\tau (z)) / (\overline{z} - \overline{z_0})\). Then

$$\begin{aligned} \left\Vert h \right\Vert _{L^p(\mathbb {R}^2)} \le C_p \tau ^{1/2-1/p} \end{aligned}$$

for \(C_p<\infty \) when \(2<p\le \infty \) and for any complex vector \(v\in \mathbb {C}^2\) we have

$$\begin{aligned} \left\Vert v\cdot \nabla h \right\Vert _{L^p(\mathbb {R}^2)}\le C_{\psi ,p,v} \tau ^{1-1/p} \end{aligned}$$

for \(C_{\psi ,p,v}<\infty \) when \(1\le p \le \infty \). The same conclusions hold if we had defined h by dividing \(1-\psi _\tau \) by \(z-z_0\) instead of its complex conjugate.

Proof

For the first claim note that \(\left|h(z) \right| \le \left|z-z_0 \right|^{-1}\) and \({{\,\mathrm{supp}\,}}h \subset \mathbb {R}^2_\tau + z_0 = \mathbb {R}^2 {\setminus } B(z_0,\tau ^{-1/2})\). Hence \(\left\Vert h \right\Vert _{L^p(\mathbb {R}^2)} \le \left\Vert z^{-1} \right\Vert _{L^p(\mathbb {R}^2_\tau )}\) and Lemma 7.2 takes care of the first estimate.

For the second estimate

$$\begin{aligned} v\cdot \nabla h(z) = \frac{v\cdot \nabla \psi _\tau (z)}{\overline{z}-\overline{z_0}} - \frac{1-\psi _\tau (z)}{(\overline{z}-\overline{z_0})^2}. \end{aligned}$$

The \(L^p\)-norm of the first term is bounded by \(\left\Vert v\cdot \nabla \psi _\tau \right\Vert _{L^p} \left\Vert z^{-1} \right\Vert _{L^\infty (\mathbb {R}^2_\tau )}\) which is at most \(C_{\psi ,p,v} \tau ^{1-1/p}\) according to Lemmas 7.1 and 7.2. The second term is supported in \(\mathbb {R}^2{\setminus } B(z_0,\tau ^{-1/2})\) and bounded pointwise by \(\left|z-z_0 \right|^{-2}\). Hence, as in the first paragraph, it has the required bound.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blåsten, E., Tzou, L. & Wang, JN. Uniqueness for the inverse boundary value problem with singular potentials in 2D. Math. Z. 295, 1521–1535 (2020). https://doi.org/10.1007/s00209-019-02436-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02436-0

Navigation