Skip to main content
Log in

Phenothiazine derivatives, diketopyrrolopyrrole-based conjugated polymers: synthesis, optical and organic field effect transistor properties

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Novel donor–acceptor (D-A) conjugated polymers containing phenothiazine and diketopyrrolopyrrole derivatives were successfully synthesized via direct arylation polymerization using the palladium catalyst system. The C-N coupling reaction was performed for the synthesis of 4-(10H-phenothiazin-10-yl)-N,N-diphenylaniline (PDA) and 10-(pyren-1-yl)-10H-phenothiazine (PYP) as donor monomers. The D-A conjugated polymers synthesized by polymerization of PDA/PY with diketopyrrolopyrrole have been characterized via GPC, 1H NMR, FTIR, XRD, DSC, PL and UV-Vis spectroscopy, and used for fabrication of organic field effect transistors.

The novel D-A conjugated polymers containing phenothiazine derivatives and diketopyrrolopyrrole were successfully synthesized via direct (hetero)arylation polymerization. The obtained conjugated polymers have been applied for the fabrication of organic filed effect transistors. The conjugated polymers showed a hole mobility of 10−5 cm2/Vs in top contact OFET devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li Y (2012) Molecular Design of Photovoltaic Materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc Chem Res 45:723–733

    CAS  PubMed  Google Scholar 

  2. Nguyen HT, Nguyen TT, Nguyen L-TT, Le TV, Nguyen VQ, Nguyen TA, Luu AT (2015) Synthesis and characterization of three-arm star-shaped conjugated poly(3-hexylthiophene)s: impact of the core structure on optical properties. Polym Int 64:1649–1659

    CAS  Google Scholar 

  3. Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J (2016) Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv Mater 28:9423–9429

    CAS  PubMed  Google Scholar 

  4. Kim JY, Lee K, Coates NE, Moses D, Nguyen T-Q, Dante M, Heeger AJ (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317:222–225

    CAS  PubMed  Google Scholar 

  5. Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H (2016) Efficient organic solar cells processed from hydrocarbon solvents. Nat Energy 1:15027

    CAS  Google Scholar 

  6. Kim BG, Ma X, Chen C, Ie Y, Coir EW, Hashemi H, Aso Y, Green PF, Kieffer J, Kim J (2013) Energy level modulation of HOMO, LUMO, and band-gap in conjugated polymers for organic photovoltaic applications. Adv Funct Mater 23:439–445

    CAS  Google Scholar 

  7. Jhuo HJ, Yeh PN, Liao SH, Li YL, Cheng YS, Chen SA (2014) Review on the recent Progress in low band gap conjugated polymers for bulk hetero-junction polymer solar cells. J Chin Chem Soc 61:115–126

    CAS  Google Scholar 

  8. Li H, Earmme T, Subramaniyan S, Jenekhe SA (2015) Bis (naphthalene imide) diphenylanthrazolines: a new class of electron acceptors for efficient nonfullerene organic solar cells and applicable to multiple donor polymers. Adv Energy Mater 5:1402041

    Google Scholar 

  9. Li H, Hwang YJ, Courtright BA, Eberle FN, Subramaniyan S, Jenekhe SA (2015) Fine-tuning the 3D structure of nonfullerene Electron acceptors toward high-performance polymer solar cells. Adv Mater 27:3266–3272

    CAS  PubMed  Google Scholar 

  10. Wienk MM, Turbiez M, Gilot J, Janssen RA (2008) Narrow-bandgap diketo-pyrrolo-pyrrole polymer solar cells: the effect of processing on the performance. Adv Mater 20:2556–2560

    CAS  Google Scholar 

  11. Pan H, Wu Y, Li Y, Liu P, Ong BS, Zhu S, Xu G (2007) Benzodithiophene copolymer—a low-temperature, solution-processed high-performance semiconductor for thin-film transistors. Adv Funct Mater 17:3574–3579

    CAS  Google Scholar 

  12. Li Y, Wu Y, Liu P, Birau M, Pan H, Ong BS (2006) Poly (2, 5-bis (2-thienyl)-3, 6-dialkylthieno [3, 2-b] thiophene) s—high-mobility semiconductors for thin-film transistors. Adv Mater 18:3029–3032

    CAS  Google Scholar 

  13. Lim ZB, Xue B, Bomma S, Li H, Sun S, Lam YM, Belcher WJ, Dastoor PC, Grimsdale AC (2011) New moderate bandgap polymers containing alkoxysubstituted-benzo [c][1, 2, 5] thiadiazole and thiophene-based units. J Polym Sci Part A: Polym Chem 49:4387–4397

    CAS  Google Scholar 

  14. Li Y, Sonar P, Murphy L, Hong W (2013) High mobility diketopyrrolopyrrole (DPP)-based organic semiconductor materials for organic thin film transistors and photovoltaics. Energy Environ Sci 6:1684–1710

    CAS  Google Scholar 

  15. Qu S, Tian H (2012) Diketopyrrolopyrrole (DPP)-based materials for organic photovoltaics. Chem Commun 48:3039–3051

    CAS  Google Scholar 

  16. Lee J, Park HJ, Joo JM, Hwang D-H (2019) Synthesis and characterization of DPP-based conjugated polymers via Dehydrogenative direct Alkenylation Polycondensation. Macromol Res 27:115–118

    CAS  Google Scholar 

  17. Li W, Hendriks KH, Wienk MM, Janssen RA (2015) Diketopyrrolopyrrole polymers for organic solar cells. Acc Chem Res 49:78–85

    PubMed  Google Scholar 

  18. Zhao C, Guo Y, Zhang Y, Yan N, You S, Li W (2019) Diketopyrrolopyrrole-based conjugated materials for non-fullerene organic solar cells. J Mater Chem A 7:10174–10199

    CAS  Google Scholar 

  19. Sun P, Li X, Wang Y, Shan H, Xu J, Liu C, Zhang C, Chen F, Xu Z, Z-k C (2018) Diketopyrrolopyrrole-based acceptors with multi-arms for organic solar cells. RSC Adv 8:25031–25039

    CAS  Google Scholar 

  20. Bi S, Li Y, He Z, Ouyang Z, Guo Q, Jiang C (2019) Self-assembly diketopyrrolopyrrole-based materials and polymer blend with enhanced crystal alignment and property for organic field-effect transistors. Org Electron 65:96–99

    CAS  Google Scholar 

  21. Jiramitmongkon K, Chotsuwan C, Asawapirom U, Hirunsit P (2019) Cyclopentadithiophene and Diketo-pyrrolo-pyrrole fused rigid copolymer for high optical contrast electrochromic polymer. J Polym Res 27:17

    Google Scholar 

  22. Bi S, He Z, Chen J, Li D (2015) Solution-grown small-molecule organic semiconductor with enhanced crystal alignment and areal coverage for organic thin film transistors. AIP Adv 5:077170

    Google Scholar 

  23. Negru OI, Grigoras M (2019) Synthesis and properties of copolyarylenes containing indolo[3,2-b]carbazole moieties in the backbone. J Polym Res 26:30

    Google Scholar 

  24. Ramachandran M, Raj MR, Azeez UHA, Sorrentino A, Anandan S, Ashokkumar M (2020) Synthesis of random copolymer using Zig-Zag Naphthodithiophene for bulk Heterojunction polymer solar cell applications. J Polym Res 27:171

    CAS  Google Scholar 

  25. Kong X, Kulkarni AP, Jenekhe SA (2003) Phenothiazine-based conjugated polymers: synthesis, electrochemistry, and light-emitting properties. Macromolecules 36:8992–8999

    CAS  Google Scholar 

  26. Lai RY, Fabrizio EF, Lu L, Jenekhe SA, Bard AJ (2001) Synthesis, cyclic voltammetric studies, and electrogenerated chemiluminescence of a new donor acceptor molecule: 3, 7-[Bis [4-phenyl-2-quinolyl]]-10-methylphenothiazine. J Am Chem Soc 123:9112–9118

    CAS  PubMed  Google Scholar 

  27. Lai RY, Kong X, Jenekhe SA, Bard AJ (2003) Synthesis, cyclic voltammetric studies, and electrogenerated chemiluminescence of a new phenylquinoline-biphenothiazine donor− acceptor molecule. J Am Chem Soc 125:12631–12639

    CAS  PubMed  Google Scholar 

  28. Krämer CS, Zeitler K, Müller TJ (2000) Synthesis of functionalized ethynylphenothiazine fluorophores. Org Lett 2:3723–3726

    PubMed  Google Scholar 

  29. Krämer C, Zeitler K, Müller T (2001) First synthesis and electronic properties of (hetero) aryl bridged and directly linked redox active phenothiazinyl dyads and triads. Tetrahedron Lett 42:8619–8624

    Google Scholar 

  30. Ruiz-Castillo P, Buchwald SL (2016) Applications of palladium-catalyzed C–N cross-coupling reactions. Chem Rev 116:12564–12649

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bredas J, Heeger A (1990) Theoretical investigation of gas-phase torsion potentials along conjugated polymer backbones: polyacetylene, polydiacetylene, and polythiophene. Macromolecules 23:1150–1156

    CAS  Google Scholar 

  32. Chen T-A, Wu X, Rieke RD (1995) Regiocontrolled synthesis of poly (3-alkylthiophenes) mediated by Rieke zinc: their characterization and solid-state properties. J Am Chem Soc 117:233–244

    CAS  Google Scholar 

  33. Yuan Y, Zhang J, Sun J, Hu J, Zhang T, Duan Y (2011) Polymorphism and structural transition around 54 C in regioregular poly (3-hexylthiophene) with high crystallinity as revealed by infrared spectroscopy. Macromolecules 44:9341–9350

    CAS  Google Scholar 

  34. Dag S, Wang L-W (2010) Packing structure of poly (3-hexylthiophene) crystal: ab initio and molecular dynamics studies. J Phys Chem B 114:5997–6000

    CAS  PubMed  Google Scholar 

  35. Nguyen TA, Luu AT, Nguyen TH, Le NM, Tran HM, Nguyen L-TT, Lee JY, Nguyen HT (2017) Thiacalix[3]Triazine-centered regioregular poly(3-hexylthiophene) star: synthesis, structure and anion binding. J Polym Res 24:180

    Google Scholar 

  36. Zhang G, Guo J, Zhang J, Li P, Ma J, Wang X, Lu H, Qiu L (2015) A phthalimide-and diketopyrrolopyrrole-based a 1–π–a 2 conjugated polymer for high-performance organic thin-film transistors. Polym Chem 6:418–425

    CAS  Google Scholar 

  37. Horowitz G (1998) Organic field-effect transistors. Adv Mater 10:365–377

    CAS  Google Scholar 

  38. Urien M, Wantz G, Cloutet E, Hirsch L, Tardy P, Vignau L, Cramail H, Parneix J-P (2007) Field-effect transistors based on poly (3-hexylthiophene): effect of impurities. Org Electron 8:727–734

    CAS  Google Scholar 

  39. Tu G, Bilge A, Adamczyk S, Forster M, Heiderhoff R, Balk LJ, Mühlbacher D, Morana M, Koppe M, Scharber MC, Choulis SA, Brabec CJ, Scherf U (2007) The influence of Interchain branches on solid state packing, hole mobility and photovoltaic properties of poly(3-hexylthiophene) (P3HT). Macromol Rapid Commun 28:1781–1785

    CAS  Google Scholar 

  40. Nawaz A, Cruz-Cruz I, Rodrigues R, Hümmelgen IA (2015) Performance enhancement of poly(3-hexylthiophene-2,5-diyl) based field effect transistors through surfactant treatment of the poly(vinyl alcohol) gate insulator surface. PCCP 17:26530–26534

    CAS  PubMed  Google Scholar 

  41. de Col C, Nawaz A, Cruz-Cruz I, Kumar A, Kumar A, Hümmelgen IA (2015) Poly(vinyl alcohol) gate dielectric surface treatment with vitamin C for poly(3-hexylthiophene-2,5-diyl) based field effect transistors performance improvement. Org Electron 17:22–27

    Google Scholar 

  42. He Z, Zhang Z, Bi S (2019) Long-range crystal alignment with polymer additive for organic thin film transistors. J Polym Res 26:173

    Google Scholar 

  43. He Z, Zhang Z, Bi S, Asare-Yeboah K, Chen J (2020) Ultra-low misorientation angle in small-molecule semiconductor/polyethylene oxide blends for organic thin film transistors. J Polym Res 27:75

    CAS  Google Scholar 

  44. He Z, Zhang Z, Asare-Yeboah K, Bi S (2019) Poly(α-methylstyrene) polymer and small-molecule semiconductor blend with reduced crystal misorientation for organic thin film transistors. J Mater Sci Mater Electron 30:14335–14343

    CAS  Google Scholar 

  45. He Z, Zhang Z, Bi S, Chen J, Li D (2020) Conjugated polymer controlled morphology and charge transport of small-molecule organic semiconductors. Sci Rep 10:4344

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number B2019-20-12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ha Tran Nguyen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 239 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Truong, N.T.T., Nguyen, L.T., Mai, H.L.T. et al. Phenothiazine derivatives, diketopyrrolopyrrole-based conjugated polymers: synthesis, optical and organic field effect transistor properties. J Polym Res 27, 223 (2020). https://doi.org/10.1007/s10965-020-02199-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02199-x

Keywords

Navigation