Skip to main content
Log in

Preview Control-Based Online Walking Pattern Generation for Biped Robots with Vertical Center-of-Mass Motion

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

In this paper, we propose a method for generating the center-of-mass (CoM) pattern for biped robots. One of the most common methods for CoM pattern generation is to approximate the robot’s complex dynamics as alinear inverted pendulum model, applies preview controls, and generates CoM trajectories. However, the vertical motion of CoM is neglected during this approximation process. In this study, we formulate the preview control problem considering the dynamics of the CoM vertical motion and propose an algorithm to solve it. The results of numerical experiments to evaluate the proposed algorithm show it is more stable than the existing algorithm and can be sufficiently fast for online operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., & Fujimura, K. (2002). The intelligent asimo: System overview and integration. In IEEE/RSJ international conference on intelligent robots and systems (Vol. 3, pp. 2478–2483). IEEE.

  2. Chestnutt, J., Lau, M., Cheung, G., Kuffner, J., Hodgins, J., & Kanade, T. (2005). Footstep planning for the honda asimo humanoid. In Proceedings of the 2005 IEEE international conference on robotics and automation (pp. 629–634). IEEE.

  3. Feng, S., Xinjilefu, X., Atkeson, C. G., & Kim, J. (2015). Optimization based controller design and implementation for the atlas robot in the darpa robotics challenge finals. In 2015 IEEE-RAS 15th international conference on humanoid robots (humanoids) (pp. 1028–1035). IEEE.

  4. Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F., et al. (2016). Optimization-based locomotion planning, estimation, and control design for the atlas huma-noid robot. Autonomous Robots, 40(3), 429–455.

    Article  Google Scholar 

  5. Akachi, K., Kaneko, K., Kanehira, N., Ota, S., Miyamori, G., Hirata, M., Kajita, S., & Kanehiro, F. (2005). Development of humanoid robot hrp-3p. In 5th IEEE-RAS international conference on humanoid robots (pp. 50–55). IEEE.

  6. Kaneko, K., Harada, K., Kanehiro, F., Miyamori, G., & Akachi, K. (2008). Humanoid robot hrp-3. In 2008 IEEE/RSJ international conference on intelligent robots and systems (pp. 2471–2478). IEEE.

  7. Park, I. W., Kim, J. Y., Lee, J., & Oh, J. H. (2006). Online free walking trajectory generation for biped humanoid robot khr-3 (hubo). In Proceedings 2006 IEEE international conference on robotics and automation, 2006. ICRA 2006 (pp. 1231–1236). IEEE.

  8. Wang, H., Zheng, Y. F., Jun, Y., & Oh, P. (2014). Drc-hubo walking on rough terrains. In 2014 IEEE international conference on technologies for practical robot applications (TePRA) (pp. 1–6). IEEE.

  9. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., & Hirukawa. H. (2003). Biped walking pattern generation by using preview control of zero-moment point. In 2003 IEEE international conference on robotics and automation (Vol. 2, pp. 1620–1626). IEEE.

  10. Han, Y. H., Jeon, H. J., & Cho, B. K. (2018). Development of a humanoid robot for the 2018 ski robot challenge. International Journal of Precision Engineering and Manufacturing, 21, 1309–1320.

    Article  Google Scholar 

  11. Hwang, S., Lee, S., Shin, D., Baek, I., Kim, M., Sun, D., et al. (2019). Intuitive gait pattern generation for an exoskeleton robot. International Journal of Precision Engineering and Manufacturing, 20(11), 1905–1913.

    Article  Google Scholar 

  12. Katayama, T., Ohki, T., Inoue, T., & Kato, T. (1985). Design of an optimal controller for a discrete-time system subject to previe wable demand. International Journal of Control, 41(3), 677–699.

    Article  MathSciNet  Google Scholar 

  13. Park, J., & Youm, Y. (2007). General zmp preview control for bipedal walking. In Proceedings 2007 IEEE international conference on robotics and automation (pp. 2682–2687). IEEE.

  14. Huang, W., Chew, C. M., Zheng, Y., & Hong, G. S. (2008). Pattern generation for bipedal walking on slopes and stairs. In Humanoids 2008-8th IEEE-RAS international conference on humanoid robots (pp. 205–210). IEEE.

  15. Inman, V. T., & Peltier, L. F. (1993). Human locomotion. Clinical Orthopaedics and Related Research, 288, 3–9.

    Google Scholar 

  16. Omran, S., Sakka, S., & Aoustin, Y. (2016). Effects of comvertical oscillation on joint torques during 3d walking of humanoid robots. International Journal of Humanoid Robotics, 13(04), 1650019.

    Article  Google Scholar 

  17. Kormushev, P., Ugurlu, B., Calinon, S., Tsagarakis, N. G., & Caldwell, D. G. (2011). Bipedal walking energy minimization by reinforcement learning with evolving policy parameterization. In 2011 IEEE/RSJ international conference on intelligent robots and systems (pp. 318–324). IEEE.

  18. Hong, Y.-D., Park, C.-S., & Kim, J.-H. (2013). Stable bipedal walking with a vertical center-of-mass motion by an evolutionary optimized central pattern generator. IEEE Transactions on Industrial Electronics, 61(5), 2346–2355.

    Article  Google Scholar 

  19. Harada, K., Miura, K., Morisawa, M., Kaneko, K., Nakaoka, S., Kanehiro, F., Tsuji, T., & Kajita, S. (2009). Toward human-like walking pattern generator. In 2009 IEEE/RSJ international conference on intelligent robots and systems (pp. 1071–1077). IEEE.

  20. Lee, S., Lee, J., Lee, D. G., & Oh, Y. (2016). Walking pattern generation in sagittal plane possessing characteristics of human normal walking. In 2016 IEEE international conference on mechatronics and automation (pp. 1066–1072). IEEE.

  21. Van Heerden, K. (2015). Planning com trajectory with variable height and foot position with reactive stepping for humanoid robots. In 2015 IEEE international conference on robotics and automation (ICRA) (pp. 6275–6280). IEEE.

  22. Anderson, B. D., & Moore, J. B. (2007). Optimal control: Linear quadratic methods. Chelmsford: Courier Corporation.

    Google Scholar 

  23. Koenig, N., & Howard, A. (2004). Design and use paradigms for gazebo, an open-source multi-robot simulator. In IEEE/RSJ international conference on intelligent robots and systems, Sendai, Japan, Sep 2004 (pp. 2149–2154).

  24. Smith, R., et al. (2005). Open dynamics engine, http://www.ode.org.

Download references

Acknowledgements

This work was supported by the Research Grant of Kwangwoon University in 2018, the National Research Foundation of Korea (NRF), funded by the Ministry of Education (No. NRF-2018R1D1A 1B07042833), and the National Research Foundation of Korea grant, funded by the Korea government(MSIT) (No. NRF-2019R1A 4A1029003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ill-Woo Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, K., Yoo, J., Back, J. et al. Preview Control-Based Online Walking Pattern Generation for Biped Robots with Vertical Center-of-Mass Motion. Int. J. Precis. Eng. Manuf. 21, 1653–1661 (2020). https://doi.org/10.1007/s12541-020-00378-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-020-00378-w

Keywords

Navigation