Skip to main content
Log in

Morphometry and Morphostructural Studies of the Parts of Gola River and Kalsa River Basins, Chanphi-Okhalkanda Region, Kumaun Lesser Himalaya, India

  • Published:
Geotectonics Aims and scope

Abstract

Study of morphometric parameters such as stream length (Lu) and stream length ratios (Rl), bifurcation ratio (Rb), drainage density (D), form factor (Rf), circularity ratio (Rc), elongation ratio (Re) and asymmetry factor (Af) in the Gola and Kalsa River Basins show a strong structural/tectonic control over the drainage in the study area and also indicate intense tectonic activity in the recent past. Field studies also suggest that several parts of the study area are structurally controlled and neotectonically active, e.g. incidences of landslides, presence of asymmetrical river terraces, river incision, formation of deep gorges, triangular facets and tilting of recent deposits etc. Morphometric parameters also suggest a possibility of flash floods and high discharges in few sub-basins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. D. Abrahams, “Channel networks: A geomorphological perspective,” Water Resour. Res. 20, 161‒168 (1984).

    Google Scholar 

  2. A. Agarwal, K. K. Agarwal, R. Bali, C. Prakash, and G. Joshi, “Back-thrusting in Lesser Himalaya: Evidences from magnetic fabric studies in parts of Almora crystalline zone, Kumaun Lesser Himalaya,” J. Earth Syst. Sci. 125, 873–884 (2016).

    Google Scholar 

  3. K. K. Agarwal, “Tectonic evolution of the Almora crystalline zone, Kumaun Lesser Himalaya: A reinterpretation,” J. Geol. Soc. India 43 (1), 5–14 (1994).

    Google Scholar 

  4. K. K. Agarwal, C. Prakash, S. N. Ali, and N. Jahan, “Morphometric analysis of the Ladhiya and Lohawati River basins, Kumaun Lesser Himalaya, India,” Z. Geomorphol. 56, 201–224 (2012).

    Google Scholar 

  5. K. K. Agarwal, R. A. Shah, H. Achyuthan, D. S. Singh, S. Srivastava, and I. Khan, “Neotectonic activity from Karewa sediments, Kashmir Himalaya, India,” Geotectonics 52, 88‒99 (2018).

    Google Scholar 

  6. K. K. Agarwal and A. R. Bhattacharya, “Geology, structure and evolution of the Almora Crystalline Zone in the Mukteshwar-Paharpani area with special reference to the South Almora Thrust,” Geosci. J. VI (1), 37‒56 (1985).

    Google Scholar 

  7. K. K. Agarwal and V. K. Sharma, “Quaternary tilt block tectonics in parts of Eastern Kumaun Himalaya, India,” Z. Geomorphol. 55, 197–208 (2011).

    Google Scholar 

  8. K. K. Agarwal and U. K. Shukla, “Deformational pattern of the Siwalik Sequence in the Gaula River and Nihal Nadi sections, Kumaun Himalaya, Uttaranchal,” J. Paleontol. Soc. India, Spec. Vol. 2, 65‒72 (2005).

    Google Scholar 

  9. R. Bali, K. K. Agarwal, S. N. Ali, S. K. Rastogi, and K. Krishna, “Drainage morphometry of Himalayan glacio-fluvial basin, India: Hydrologic and neotectonic implications,” Environ. Earth Sci. 66, 1163–1174 (2012).

    Google Scholar 

  10. R. Bali, A. R. Bhattacharya, and T. N. Singh, “Active tectonics in the outer Himalaya: Dating a landslide event in the Kumaun sector,” J. Earth Sci. India 2, 276–288 (2009).

    Google Scholar 

  11. R. Bali and K. K. Agarwal, “Microstructures of mylonites in the Almora Crystalline Zone, Kumaun Lesser Himalaya,” in Geodynamics of the NW Himalaya, Vol. 6 of Gondwana Res. Group Mem., Ed. by A. K. Jain and R. M. Manickavasagam (1999), pp. 111–116.

  12. R. Bali, D. D. Awasthi and, N. K. Tiwari, “Neotectonic control on the geomorphic evolution of the Gangotri Glacier Valley, Garhwal Himalaya,” Gondwana Res. 6, 829–838 (2003).

    Google Scholar 

  13. R. Chopra, R. D. Dhiman, and P. K. Sharma, “Morphometric analysis of sub-watersheds, district Gurdaspur, Punjab,” J. Indian Soc. Remote Sens. 33, 531‒539 (2005).

    Google Scholar 

  14. P. D. Clift, “Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean,” Earth Planet. Sci. Lett. 241, 571–580 (2006).

    Google Scholar 

  15. S. Critelli and E. Garzanti, “Provenance of the Lower Tertiary Murree red-beds (Hazara-Kashmir Syntaxis, Pakistan) and initial rising of the Himalayas,” Sediment. Geol. 89, 265–284 (1994).

    Google Scholar 

  16. R. T. Cox, “Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible quaternary tilt-block tectonics: An example from the Mississippi Embayment,” Geol. Soc. Am. Bull. 106, 571–581 (1994).

    Google Scholar 

  17. R. A. Dar, R. Chandra, and S. A. Romshoo, “Morphotectonic and lithostratigraphic analysis of intermontane Karewa Basin of Kashmir Himalayas, India,” J. Mt. Sci. 10, 1–15 (2013).

    Google Scholar 

  18. P. G. Decelles, G. E. Gehrels, J. Quade, B. Lareau, and M. Spurlin, “Tectonic implications of U–Pb zircon ages of the Himalayan orogenic belt in Nepal,” Science 288, 497 – 499 (2000).

    Google Scholar 

  19. R. El Hamdouni, C. Irigaray, T. Fernández, J. Chacón, and E. A. Keller, “Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain),” Geomorphology 96, 150–173 (2008).

    Google Scholar 

  20. A. Gansser, Geology of the Himalayas (Interscience, London, 1964).

    Google Scholar 

  21. P. W. Hare and T. W. Gardner, “Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica,” in Tectonic Geomorphology: Proceedings of the 15th Annual Binghamton Geomorphological Symposium, Ed. by M. Morisawa and J. T. Hack (Allen & Unwin, Boston, 1985), pp. 75–104.

  22. R. E. Horton, “Drainage basin characteristics,” Trans., Am. Geophys. Union 13, 350–361 (1932).

    Google Scholar 

  23. R. E. Horton, “Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology,” Bull. Geol. Soc. India 30, 169–186 (1945).

    Google Scholar 

  24. R. Jayangondaperumal, A. K. Dubey, and K. Sen, “Structural and magnetic fabric studies of recess structures in the western Himalaya: Implications for 1905 Kangra earthquake,” J. Geol. Soc. India 75, 225–238 (2010).

    Google Scholar 

  25. G. Joshi, A. Agarwal, K. K. Agarwal, S. Srivastava, and L. M. Alva Valdivia, “Microstructures and strain variation: Evidence of multiple splays in the North Almora Thrust Zone, Kumaun Lesser Himalaya, Uttarakhand, India,” Tectonophysics 694, 239‒248 (2017).

    Google Scholar 

  26. E. A. Keller and N. Pinter, Active Tectonics: Earthquakes, Uplift and Landscape (Prentice-Hall, Upper Saddle River, N.J., 1996).

    Google Scholar 

  27. G. C. Kothyari and K. Luirei, “Late Quaternary tectonic landforms and fluvial aggradation in the Saryu River valley: Central Kumaun Himalaya,” Geomorphology 268, 159‒176 (2016).

    Google Scholar 

  28. G. C. Kothyari, A. D. Shukla, and N. Juyal, “Reconstruction of Late Quaternary climate and seismicity using fluvial landforms in Pindar River valley, Central Himalaya, Uttarakhand, India,” Quat. Int. 443, 248‒264 (2016).

    Google Scholar 

  29. B. S. Kotlia, B. Phartiyal, T. Kosaka, and A. Bohra, “Magnetostratigraphy and lithology of Miocene–Pliocene Siwalik deposits between Tanakpur and Sukhidang, southeastern Uttarakhand Himalaya, India,” Himalayan Geol. 29, 127‒136 (2008).

    Google Scholar 

  30. B. S. Kotlia, P. K. Goswami, L. M. Joshi, A. K. Singh, and A. K. Sharma, “Sedimentary environment and geomorphic development of the uppermost Siwalik molasse in Kumaun Himalayan foreland basin, North India,” Geol. J. 59, 159–177 (2018). https://doi.org/10.1002/gj.2883

    Article  Google Scholar 

  31. L. B. Leopold and T. Maddock, The Hydraulic Geometry of Stream Channels and Some Physiographic Implications, Vol. 252 of U.S. Geol. Surv., Prof. Pap. (1953).

  32. P. Mahesh, S. Gupta, U. Saikia, and S. S. Rai, “Seismotectonics and crustal stress field in the Kumaun-Garhwal Himalaya,” Tectonophysics 655, 124‒138 (2015).

    Google Scholar 

  33. M. S. Manu and S. Anirudhan, “Drainage characteristics of Achankovil river basin, Kerala,” J. Geol. Soc. India 71, 841–850 (2008).

    Google Scholar 

  34. L. M. Mesa, “Morphometric analysis of a subtropical Andean basin (Tucuman, Argentina),” Environ. Geol. 50, 1235–1242 (2006).

    Google Scholar 

  35. H. B. Medlicott, “On the geological structure and relations of the southern portion of the Himalayan ranges between the rivers Ganges and the Ravee,” Mem. Geol. Surv. India 3, 1–212 (1864).

    Google Scholar 

  36. M. A. Melton, An Analysis of the Relations among Elements of Climate, Surface Properties and Geomorphology: Columbia Univ. Tech. Rep. 11 (Columbia Univ., New York, 1957).

  37. V. C. Miller, A Quantitative Geomorphic Study of Drainage Basin Characteristics in the Clinch Mountain Area, Virginia and Tennessee: Columbia Univ. Tech. Rep. 3 (Columbia Univ., New York, 1953).

  38. P. Molnar and P. Tapponnier, “Cenozoic tectonics of Asia: Effects of a continental collision,” Science 189, 419-426 (1975).

    Google Scholar 

  39. P. Molnar, B. C. Burchfiel, K. Liang, and Z. Zhao, “Geomorphic evidence for active faulting in the Altyn Tagh and northern Tibet and qualitative estimates of its contribution to the convergence of India and Eurasia,” Geology 15, 249–253 (1987).

    Google Scholar 

  40. S. K. Nag, “Morphometric analysis using remote sensing techniques in the Chaka sub-basin, Purulia district, West Bengal,” J. Indian Soc. Rem. Sens. 26, 69–76, (1998).

    Google Scholar 

  41. T. Nakata, “Geomorphic history and crustal movements of the foot-hills of the Himalaya,” Tohoku Univ. Sci. Rep.: Ser. 7 22, 39–177 (1972).

    Google Scholar 

  42. T. Nakata, “Active faults of the Himalaya of India and Nepal,” in Tectonics of the Western Himalayas, Vol. 232 of Geol. Soc. Am., Spec. Pap., Ed. by L. L. Malinconico, Jr., and R. J. Lillie (1989), pp. 243–264.

  43. T. Nakata and Y. Kumahara, “Active faulting in and around Himalaya, and its significance in the collision tectonics,” Active Fault Res. 22, 7–16 (2002).

    Google Scholar 

  44. A. Paul, S. S. Bhakuni, C. C. Pant, G. S. Darmwal and V. Pathak, “Micro-seismicity in central part of Inner Kumaun Lesser Himalaya: Implication to active seismotectonics,” Himalayan Geol. 31, 107‒115 (2010).

    Google Scholar 

  45. V. Pathak, C. C. Pant, and G. S. Darmwal, “Geomorphological and seismological investigations in a part of western Kumaun Himalaya, Uttarakhand, India,” Geomorphology 193, 81–90 (2013).

    Google Scholar 

  46. J. V. Pérez-Peña, A. Azor, J. M. Azañón, and E. A. Keller, “Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis,” Geomorphology 119, 74–87 (2010).

    Google Scholar 

  47. M. Rudraiah, S. Govindaiah, and V. S. Srinivas, “Morphometry using remote sensing and GIS techniques in the sub-basins of Kagna river basin, Gulburga district, Karnataka, India,” J. Indian Soc. Rem. Sens. 36, 351–360 (2008).

    Google Scholar 

  48. S. A. Schumm, “Evolution of drainage systems and slopes in badland, at Perth Amboy, New Jersey,” Geol. Soc. Am. Bull. 67, 597–646 (1956).

    Google Scholar 

  49. U. K. Shukla, D. S. Bora, and C. K. Singh, “Geomorphic positioning and depositional dynamics of river systems in Lower Siwalik Basin, Kumaun Himalaya, India,” J. Geol. Soc. India 73, 335–354 (2009).

    Google Scholar 

  50. S. Singh and M. C. Singh, “Morphometric analysis of Kanhar river basin,” Natl. Geogr. J. India 43, 31–43 (1997).

    Google Scholar 

  51. K. G. Smith, “Standards for grading textures of erosional topography,” Am. J. Sci. 248, 655‒668 (1950).

    Google Scholar 

  52. P. D. Sreedevi, K. Subrahmanyam, and S. Ahmed, “The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain,” Environ. Geol. 47, 412–420 (2005).

    Google Scholar 

  53. P. Srivastava and G. Mitra, “Thrust geometries and deep structure of the outer and lesser Himalaya, Kumaon and Garhwal (India): Implications for evolution of the Himalayan fold and thrust belt,” Tectonics 13, 89–109 (1994).

    Google Scholar 

  54. P. Srivastava, D. K. Misra, K. K. Agarwal, S. S. Bhakhuni, and K. Luirei, “Late Quaternary evolution of Ziro intermontane lake basin, NE Himalaya, India,” Himalayan Geol. 30, 175–185 (2009).

    Google Scholar 

  55. A. N. Strahler, “Hypsometic (area-altitude) analysis of erosional topography,” Geol. Soc. Am. Bull. 63, 1117–1142 (1952).

    Google Scholar 

  56. A. N. Strahler, “Quantitative geomorphology of drainage basin and channel networks,” in Handbook of Applied Hydrology, Ed. by V. T. Chow (McGraw-Hill, New York, 1964), pp. 4–76.

    Google Scholar 

  57. M. A. Summerfield, Global Geomorphology (Longman Sci. Tech., Essex, England, 1991).

    Google Scholar 

  58. V. Strak, S. Dominguez, C. Petit, B. Meyer, and N. Loget, “Interaction between normal fault slip and erosion on relief evolution: Insights from experimental modeling,” Tectonophysics 513, 1–19 (2011).

    Google Scholar 

  59. I. M. Tsodulos, I. K. Koukouvelas, and S. Pavlides, “Tectonic geomorphology of the easternmost extension of the Gulf of Corinth (Beotia, Central Greece),” Tectonophysics 453, 211–232 (2008).

    Google Scholar 

  60. K. S. Valdiya, Geology of Kumaun Lesser Himalaya (Wadia Inst. Himalayan Geol., Dehra Dun, India, 1980).

    Google Scholar 

  61. K. S. Valdiya, “Neotectonic activities in the Himalayan belt,” in Proceedings of International Symposium on Neotectonics in South Asia (Geol. Surv. India, Dehradun, 1986), pp. 241–267.

  62. K. S. Valdiya, “Reactivation of terrain-defining boundary thrusts in central sector of the Himalaya,” Current Sci. 81, 2101–2114 (2001).

    Google Scholar 

  63. K. S. Valdiya and V. S. Cronin, “Tectonics and evolution of the central sector of the Himalaya,” Philos. Trans. R. Soc., A 326, 151–175 (1988).

  64. H. Vijith and R. Satheesh, “GIS based morphometric analysis of two major upland sub-watersheds of Meenachil River in Kerala,” J. Indian Soc. Rem. Sens. 34, 181‒185 (2006).

    Google Scholar 

  65. A. A. G. Webb, “Cenozoic tectonic history of the Himachal Himalaya (Northwestern India) and its constraints on the formation mechanism of the Himalayan orogen,” Geosphere 7, 1013‒1061 (2011).

    Google Scholar 

  66. A. A. G. Webb, “Preliminary balanced palinspastic reconstruction of Cenozoic deformation across the Himachal Himalaya (northwestern India),” Geosphere 9, 572‒587 (2013).

    Google Scholar 

  67. A. Yin, “Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation,” Earth-Sci. Rev. 76, 1–131 (2006).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Head, Centre of Advanced Study in Geology, University of Lucknow (L-ucknow, India) for providing working facilities.

Funding

Authors are thankful to CSIR, Government of India, for providing financial support to Gaurav Joshi in the form of SRF (09/107(0394)/2018-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Agarwal.

Additional information

Reviewers: V.S. Imaev, E.A. Rogozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lal. Kumar, Joshi, G. & Agarwal, K.K. Morphometry and Morphostructural Studies of the Parts of Gola River and Kalsa River Basins, Chanphi-Okhalkanda Region, Kumaun Lesser Himalaya, India. Geotecton. 54, 410–427 (2020). https://doi.org/10.1134/S0016852120030048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852120030048

Keywords:

Navigation