Skip to main content
Log in

Nutrient and microbial water quality of the upper Ganga River, India: identification of pollution sources

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Ganga River is facing mounting environmental pressures due to rapidly increasing human population, urbanisation, industrialisation and agricultural intensification, resulting in worsening water quality, ecological status and impacts on human health. A combined inorganic chemical, algal and bacterial survey (using flow cytometry and 16S rRNA gene sequencing) along the upper and middle Ganga (from the Himalayan foothills to Kanpur) was conducted under pre-monsoon conditions. The upper Ganga had total phosphorus (TP) and total dissolved nitrogen concentrations of less than 100 μg l−1 and 1.0 mg l−1, but water quality declined at Kannauj (TP = 420 μg l−1) due to major nutrient pollution inputs from human-impacted tributaries (principally the Ramganga and Kali Rivers). The phosphorus and nitrogen loads in these two tributaries and the Yamuna were dominated by soluble reactive phosphorus and ammonium, with high bacterial loads and large numbers of taxa indicative of pathogen and faecal organisms, strongly suggesting sewage pollution sources. The high nutrient concentrations, low flows, warm water and high solar radiation resulted in major algal blooms in the Kali and Ramganga, which greatly impacted the Ganga. Microbial communities were dominated by members of the Phylum Proteobacteria, Bacteriodetes and Cyanobacteria, with communities showing a clear upstream to downstream transition in community composition. To improve the water quality of the middle Ganga, and decrease ecological and human health risks, future mitigation must reduce urban wastewater inputs in the urbanised tributaries of the Ramganga, Kali and Yamuna Rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal, A., Prajapati, R., Singh, O. P., Raza, S. K., & Thakur, L. K. (2015). Pesticide residue in water-a challenging task in India (Article). Environmental Monitoring and Assessment, 187(2), 21. https://doi.org/10.1007/s10661-015-4287-y.

    Article  CAS  Google Scholar 

  • Bowes, M. J., & House, W. A. (2001). Phosphorus and dissolved silicon dynamics in the River Swale catchment, UK: a mass-balance approach. Hydrological Processes, 15(2), 261–280 <Go to ISI>://000167211600006.

    Article  Google Scholar 

  • Bowes, M. J., Ings, N. L., McCall, S. J., Warwick, A., Barrett, C., Wickham, H. D., Harman, S. A., Armstrong, L. K., Scarlett, P. M., Roberts, C., Lehmann, K., & Singer, A. C. (2012). Nutrient and light limitation of periphyton in the River Thames: implications for catchment management. Science of the Total Environment, 434, 201–212. https://doi.org/10.1016/j.scitotenv.2011.09.082.

    Article  CAS  Google Scholar 

  • Bowes, M. J., Jarvie, H. P., Naden, P. S., Old, G. H., Scarlett, P. M., Roberts, C., et al. (2014). Identifying priorities for nutrient mitigation using river concentration–flow relationships: the Thames basin, UK. Journal of Hydrology, 517(0), 1–12. https://doi.org/10.1016/j.jhydrol.2014.03.063.

    Article  CAS  Google Scholar 

  • Bowes, M. J., Loewenthal, M., Read, D. S., Hutchins, M. G., Prudhomme, C., Armstrong, L. K., et al. (2016). Identifying multiple stressor controls on phytoplankton dynamics in the River Thames (UK) using high-frequency water quality data. Science of The Total Environment, 569–570, 1489–1499. https://doi.org/10.1016/j.scitotenv.2016.06.239.

    Article  CAS  Google Scholar 

  • Bowes, M. J., Armstrong, L. K., Harman, S. A., Wickham, H. D., Nicholls, D. J. E., Scarlett, P. M., Roberts, C., Jarvie, H. P., Old, G. H., Gozzard, E., Bachiller-Jareno, N., & Read, D. S. (2018). Weekly water quality monitoring data for the River Thames (UK) and its major tributaries (2009-2013): the Thames Initiative research platform. Earth System Science Data, 10(3), 1637–1653. https://doi.org/10.5194/essd-10-1637-2018.

    Article  Google Scholar 

  • Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data (Article). Nature Methods, 13(7), 581. https://doi.org/10.1038/nmeth.3869.

    Article  CAS  Google Scholar 

  • Chen, X., Yang, L., Xiao, L., Miao, A., & Xi, B. (2012). Nitrogen removal by denitrification during cyanobacterial bloom in Lake Taihu. Journal of Freshwater Ecology, 27(2), 243–258. https://doi.org/10.1080/02705060.2011.644405.

    Article  CAS  Google Scholar 

  • DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P., & Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72(7), 5069–5072. https://doi.org/10.1128/aem.03006-05.

    Article  CAS  Google Scholar 

  • Dixit, R. B., Patel, A. K., Toppo, K., & Nayaka, S. (2017). Emergence of toxic cyanobacterial species in the Ganga River, India, due to excessive nutrient loading (Article). Ecological Indicators, 72, 420–427. https://doi.org/10.1016/j.ecolind.2016.08.038.

    Article  CAS  Google Scholar 

  • Dodds, W. K. (2006). Eutrophication and trophic state in rivers and streams (Article). Limnology and Oceanography, 51(1), 671–680 <Go to ISI>://WOS:000241296700027.

    Article  CAS  Google Scholar 

  • Eisenreich, S. J., Bannerman, R. T., & Armstrong, D. E. (1975). A simplified phosphorus analytical technique. Environmental Letters, 9(4), 5–53.

    Google Scholar 

  • Halliday, S. J., Skeffington, R. A., Wade, A. J., Bowes, M. J., Gozzard, E., Newman, J. R., Loewenthal, M., Palmer-Felgate, E. J., & Jarvie, H. P. (2015). High-frequency water quality monitoring in an urban catchment: hydrochemical dynamics, primary production and implications for the Water Framework Directive. Hydrological Processes, 29, 3388–3407. https://doi.org/10.1002/hyp.10453.

    Article  CAS  Google Scholar 

  • Hardenbicker, P., Rolinski, S., Weitere, M., & Fischer, H. (2014). Contrasting long-term trends and shifts in phytoplankton dynamics in two large rivers. International Review of Hydrobiology, 99(4), 287–299. https://doi.org/10.1002/iroh.201301680.

    Article  Google Scholar 

  • Hershey, O. S., Kallmeyer, J., Wallace, A., Barton, M. D., & Barton, H. A. (2018). High microbial diversity despite extremely low biomass in a deep Karst Aquifer (Original Research). Frontiers in Microbiology, 9(2823). https://doi.org/10.3389/fmicb.2018.02823.

  • Indian Institutes of Technology. (2010). Ganga River basin environmental management plan. In River Ganga at a glance: Identification of issues and priority actions for restoration December 2010.

    Google Scholar 

  • Jain, C. K., Singhal, D. C., & Sharma, M. K. (2007). Estimating nutrient loadings using chemical mass balance approach (Article). Environmental Monitoring and Assessment, 134(1-3), 385–396. <Go to ISI>://000250625800030. https://doi.org/10.1007/2Fs10661-007-9630-5.pdf.

    Article  CAS  Google Scholar 

  • Jani, K., Dhotre, D., Bandal, J., Shouche, Y., Suryavanshi, M., Rale, V., & Sharma, A. (2018a). World’s largest mass bathing event influences the bacterial communities of Godavari, a Holy River of India. Microbial Ecology, 76(3), 706–718. https://doi.org/10.1007/s00248-018-1169-1.

    Article  Google Scholar 

  • Jani, K., Ghattargi, V., Pawar, S., Inamdar, M., Shouche, Y., & Sharma, A. (2018b). Anthropogenic activities induce depletion in microbial communities at urban sites of the River Ganges. Current Microbiology, 75(1), 79–83. https://doi.org/10.1007/s00284-017-1352-5.

    Article  CAS  Google Scholar 

  • Jarvie, H. P., Neal, C., & Withers, P. J. A. (2006). Sewage-effluent phosphorus: a greater risk to river eutrophication than agricultural phosphorus? Science of the Total Environment, 360(1-3), 246–253 <Go to ISI>://000237870500019.

    Article  CAS  Google Scholar 

  • Jarvie, H. P., Sharpley, A. N., Scott, J. T., Haggard, B. E., Bowes, M. J., & Massey, L. B. (2012). Within-river phosphorus retention: accounting for a missing piece in the watershed phosphorus puzzle. Environmental Science & Technology, 46(24), 13284–13292. https://doi.org/10.1021/es303562y.

    Article  CAS  Google Scholar 

  • Jin, L., Whitehead, P. G., Sarkar, S., Sinha, R., Futter, M. N., Butterfield, D., Caesar, J., & Crossman, J. (2015). Assessing the impacts of climate change and socio-economic changes on flow and phosphorus flux in the Ganga river system (Article). Environmental Science-Processes & Impacts, 17(6), 1098–1110. https://doi.org/10.1039/c5em00092k.

    Article  CAS  Google Scholar 

  • Joshi, H., Shishodia, S. K., Kumar, S. N., Saikia, D. K., Nauriyal, B. P., Mathur, R. P., Pande, P. K., Mathur, B. S., & Puri, N. (1995). Ecosystem studies on upper region of Ganga River, India. Environmental Monitoring and Assessment, 35(3), 181–206. https://doi.org/10.1007/bf00547631.

    Article  CAS  Google Scholar 

  • Jouanneau, S., Recoules, L., Durand, M. J., Boukabache, A., Picot, V., Primault, Y., Lakel, A., Sengelin, M., Barillon, B., & Thouand, G. (2014). Methods for assessing biochemical oxygen demand (BOD): a review. Water Research, 49(0), 62–82. https://doi.org/10.1016/j.watres.2013.10.066.

    Article  CAS  Google Scholar 

  • Khan, M. Y. A., Gani, K. M., & Chakrapani, G. J. (2016a). Assessment of surface water quality and its spatial variation. A case study of Ramganga River, Ganga Basin, India. Arabian Journal of Geosciences, 9(1). https://doi.org/10.1007/s12517-015-2134-7.

  • Khan, M. Y. A., Khan, B., & Chakrapani, G. J. (2016b). Assessment of spatial variations in water quality of Garra River at Shahjahanpur, Ganga Basin, India (Article). Arabian Journal of Geosciences, 9(8), 10. https://doi.org/10.1007/s12517-016-2551-2.

    Article  CAS  Google Scholar 

  • Leeks, G. J. L., Neal, C., Jarvie, H. P., Casey, H., & Leach, D. V. (1997). The LOIS river monitoring network: strategy and implementation. Science of the Total Environment, 194-195, 101–109 http://www.sciencedirect.com/science/article/B6V78-3SVYTV1-10/2/0e1f34b9e5f7ef62185848a8c8b0b6f7.

    Article  Google Scholar 

  • Marie, D., Partensky, F., Jacquet, S., & Vaulot, D. (1997). Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I (Article). Applied and Environmental Microbiology, 63(1), 186–193 <Go to ISI>://WOS:A1997WA16800029.

    Article  CAS  Google Scholar 

  • Mariya, A., Kumar, C., Masood, M., & Kumar, N. (2019). The pristine nature of river Ganges: its qualitative deterioration and suggestive restoration strategies (journal article). Environmental Monitoring and Assessment, 191(9), 542. https://doi.org/10.1007/s10661-019-7625-7.

    Article  CAS  Google Scholar 

  • Matta, N., & Bisht, G. R. S. (2018). Detection and enumeration of coliforms in Ganga water collected from different ghats. Journal of Bioprocessing & Biotechniques, 08(02), 10. https://doi.org/10.4172/2155-9821.1000320.

    Article  Google Scholar 

  • Matta, G., Srivastava, S., Pandey, R. R., & Saini, K. K. (2017). Assessment of physicochemical characteristics of Ganga Canal water quality in Uttarakhand. Environment Development and Sustainability, 19(2), 419–431. https://doi.org/10.1007/s10668-015-9735-x.

    Article  Google Scholar 

  • McCall, S. J., Hale, M. S., Smith, J. T., Read, D. S., & Bowes, M. J. (2017). Impacts of phosphorus concentration and light intensity on river periphyton biomass and community structure (journal article). Hydrobiologia, 792, 1–16. https://doi.org/10.1007/s10750-016-3067-1.

    Article  CAS  Google Scholar 

  • Milledge, D. G., Gurjar, S. K., Bunce, J. T., Tare, V., Sinha, R., & Carbonneau, P. E. (2018). Population density controls on microbial pollution across the Ganga catchment. Water Research, 128(Supplement C), 82–91. https://doi.org/10.1016/j.watres.2017.10.033.

    Article  CAS  Google Scholar 

  • Misra, A. K. (2011). Impact of urbanization on the hydrology of Ganga Basin (India) (journal article). Water Resources Management, 25(2), 705–719. https://doi.org/10.1007/s11269-010-9722-9.

    Article  Google Scholar 

  • Misra, A. K., & Mishra, A. (2007). Study of quaternary aquifers in Ganga Plain, India: focus on groundwater salinity, fluoride and fluorosis. Journal of Hazardous Materials, 144(1), 438–448. https://doi.org/10.1016/j.jhazmat.2006.10.057.

    Article  CAS  Google Scholar 

  • Moorhouse, H. L., Read, D. S., McGowan, S., Wagner, M., Roberts, C., Armstrong, L. K., Nicholls, D. J. E., Wickham, H. D., Hutchins, M. G., & Bowes, M. J. (2018). Characterisation of a major phytoplankton bloom in the River Thames (UK) using flow cytometry and high performance liquid chromatography. Science of The Total Environment, 624, 366–376. https://doi.org/10.1016/j.scitotenv.2017.12.128.

    Article  CAS  Google Scholar 

  • Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphorus in natural waters. Analytica chemica acta, 12, 31–36.

    Article  Google Scholar 

  • National River Conservation Directorate (2009) Status paper on River Ganga: state of environment and water quality. August 2009. Ministry of Environment and Forests. , pp. 1-31.

  • Neal, C., Neal, M., & Wickham, H. (2000). Phosphate measurement in natural waters: two examples of analytical problems associated with silica interference using phosphomolybdic acid methodologies (Article). Science of the Total Environment, 251, 511–522 <Go to ISI>://000087253500034 https://www.sciencedirect.com/science/article/pii/S0048969700004022?via%3Dihub.

    Article  Google Scholar 

  • Neal, C., Jarvie, H. P., Neal, M., Love, A. J., Hill, L., & Wickham, H. (2005). Water quality of treated sewage effluent in a rural area of the upper Thames Basin, southern England, and the impacts of such effluents on riverine phosphorus concentrations. Journal of Hydrology, 304(1-4), 103–117 <Go to ISI>://000227881700008.

    Article  CAS  Google Scholar 

  • O’Hare, M. T., Baattrup-Pedersen, A., Baumgarte, I., Freeman, A., Gunn, I. D. M., Lázár, A. N., Sinclair, R., Wade, A. J., & Bowes, M. J. (2018). Responses of aquatic plants to eutrophication in rivers: a revised conceptual model (Review). Frontiers in Plant Science, 9(451). https://doi.org/10.3389/fpls.2018.00451.

  • O’Keefe, J., Kaushal, N., Bharati, L., & Smakhtin, V. U. (2012). Assessment of environmental flows for the Upper Ganga Basin. In Project report of the environmental flows assessment done under the Living Ganga Program (p. 161). New Delhi: World Wide Fund for Nature - India.

    Google Scholar 

  • Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlin, D., et al. (2017). vegan: community ecology package. R package version 2.4-3. 2017 [accessed 2016 Jan 1].

  • Paerl, H. W., & Huisman, J. (2008). Blooms like it hot. Science, 320(5872), 57–58. https://doi.org/10.1126/science.1155398.

    Article  CAS  Google Scholar 

  • Paerl, H. W., & Paul, V. J. (2012). Climate change: links to global expansion of harmful cyanobacteria. Water Research, 46(5), 1349–1363. https://doi.org/10.1016/j.watres.2011.08.002.

    Article  CAS  Google Scholar 

  • Pandey, J., & Yadav, A. (2017). Alternative alert system for Ganga river eutrophication using alkaline phosphatase as a level determinant (Article). Ecological Indicators, 82, 327–343. https://doi.org/10.1016/j.ecolind.2017.06.061.

    Article  CAS  Google Scholar 

  • Pandey, J., Tripathi, S., & Pandey, U. (2016). Anthropogenically induced shifts in N:P:Si stoichiometry and implications in Ganga River (Article). Air Soil and Water Research, 9, 9. https://doi.org/10.4137/aswr.s32780.

    Article  CAS  Google Scholar 

  • Pathak, D., Whitehead, P. G., Futter, M. N., & Sinha, R. (2018). Water quality assessment and catchment-scale nutrient flux modeling in the Ramganga River Basin in north India: an application of INCA model. Science of The Total Environment, 631-632, 201–215. https://doi.org/10.1016/j.scitotenv.2018.03.022.

    Article  CAS  Google Scholar 

  • R Core Team. (2013). R: a language and environment for statistical computing. Vienna: R. F. f. S. Computing Available at: http://www.R-project.org/.

    Google Scholar 

  • Read, D. S., Bowes, M. J., Newbold, L. K., & Whiteley, A. S. (2014). Weekly flow cytometric analysis of riverine phytoplankton to determine seasonal bloom dynamics. Environ Sci Process Impacts, 16(3), 594–603. https://doi.org/10.1039/c3em00657c.

    Article  CAS  Google Scholar 

  • Read, D. S., Gweon, H. S., Bowes, M. J., Newbold, L. K., Field, D., Bailey, M. J., & Griffiths, R. I. (2015). Catchment-scale biogeography of riverine bacterioplankton (Original Article). ISME J, 9(2), 516–526. https://doi.org/10.1038/ismej.2014.166.

    Article  CAS  Google Scholar 

  • Sapkota, P., Bharati, L., Gurung, P., Kaushal, N., & Smakhtin, V. (2013). Environmentally sustainable management of water demands under changing climate conditions in the Upper Ganges Basin, India. Hydrological Processes, 27(15), 2197–2208. https://doi.org/10.1002/hyp.9852.

    Article  Google Scholar 

  • Sen, I. S., Boral, S., Ranjan, S., & Tandon, S. K. (2018). Small but important: the role of small floodplain tributaries to river nutrient budgets. ACS Earth and Space Chemistry, 2(1), 64–71. https://doi.org/10.1021/acsearthspacechem.7b00112.

    Article  CAS  Google Scholar 

  • Shah, T., Ray, C., & Lele, U. (2018). How to clean up the Ganges? Science, 362(6414), 503–503. https://doi.org/10.1126/science.aav8261.

    Article  CAS  Google Scholar 

  • Simonin, M., Voss, K. A., Hassett, B. A., Rocca, J. D., Wang, S.-Y., Bier, R. L., Violin, C. R., Wright, J. P., & Bernhardt, E. S. (2019). In search of microbial indicator taxa: shifts in stream bacterial communities along an urbanization gradient. Environmental Microbiology, 21(10), 3653–3668. https://doi.org/10.1111/1462-2920.14694.

    Article  Google Scholar 

  • Sinha, R., Mohanta, H., Jain, V., & Tandon, S. K. (2017). Geomorphic diversity as a river management tool and its application to the Ganga River, India (Article). River Research and Applications, 33(7), 1156–1176. https://doi.org/10.1002/rra.3154.

    Article  Google Scholar 

  • Skeffington, R. A., Halliday, S. J., Wade, A. J., Bowes, M. J., & Loewenthal, M. (2015). Using high-frequency water quality data to assess sampling strategies for the EU Water Framework Directive (Article). Hydrology and Earth System Sciences, 19(5), 2491–2504. https://doi.org/10.5194/hess-19-2491-2015.

    Article  Google Scholar 

  • Staley, C., Unno, T., Gould, T. J., Jarvis, B., Phillips, J., Cotner, J. B., & Sadowsky, M. J. (2013). Application of illumina next-generation sequencing to characterize the bacterial community of the Upper Mississippi River. Journal of Applied Microbiology, 115(5), 1147–1158. https://doi.org/10.1111/jam.12323.

    Article  CAS  Google Scholar 

  • Tappin, A. D., Comber, S., & Worsfold, P. J. (2016). Orthophosphate-P in the nutrient impacted River Taw and its catchment (SW England) between 1990 and 2013 (Article). Environmental Science-Processes & Impacts, 18(6), 690–705. https://doi.org/10.1039/c6em00213g.

    Article  CAS  Google Scholar 

  • Tare, V., Yadav, A. V. S., & Bose, P. (2003). Analysis of photosynthetic activity in the most polluted stretch of river Ganga (Article). Water Research, 37(1), 67–77. https://doi.org/10.1016/s0043-1354(01)00385-2.

    Article  CAS  Google Scholar 

  • Trisal, C., Tabassum, T., & Kumar, R. (2008). Water quality of the river Yamuna in the Delhi stretch: key determinants and management issues. Clean-Soil Air Water, 36(3), 306–314. https://doi.org/10.1002/clen.200700044.

    Article  CAS  Google Scholar 

  • Trivedi, R. C. (2010). Water quality of the Ganga River – an overview. Aquatic Ecosystem Health & Management, 13(4), 347–351. https://doi.org/10.1080/14634988.2010.528740.

    Article  CAS  Google Scholar 

  • Walters, W., Hyde, E. R., Berg-Lyons, D., Ackermann, G., Humphrey, G., Parada, A., et al. (2016). Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems, 1(1), e00009–e00015. https://doi.org/10.1128/mSystems.00009-15.

    Article  Google Scholar 

  • Wetz, M. S., Cira, E. K., Sterba-Boatwright, B., Montagna, P. A., Palmer, T. A., & Hayes, K. C. (2017). Exceptionally high organic nitrogen concentrations in a semi-arid South Texas estuary susceptible to brown tide blooms (Article). Estuarine Coastal and Shelf Science, 188, 27–37. https://doi.org/10.1016/j.ecss.2017.02.001.

    Article  CAS  Google Scholar 

  • Yadav, A., & Pandey, J. (2017a). Contribution of point sources and non-point sources to nutrient and carbon loads and their influence on the trophic status of the Ganga River at Varanasi, India (Article). Environmental Monitoring and Assessment, 189(9), 19. https://doi.org/10.1007/s10661-017-6188-8.

    Article  CAS  Google Scholar 

  • Yadav, A., & Pandey, J. (2017b). Water quality interaction with alkaline phosphatase in the Ganga River: implications for river health. Bulletin of Environmental Contamination and Toxicology, 99(1), 75–82. https://doi.org/10.1007/s00128-017-2108-4.

    Article  CAS  Google Scholar 

  • Zhang, S. Y., Tsementzi, D., Hatt, J. K., Bivins, A., Khelurkar, N., Brown, J., et al. (2018). Intensive allochthonous inputs along the Ganges River and their effect on microbial community composition and dynamics. Environmental Microbiology, 0(ja). https://doi.org/10.1111/1462-2920.14439.

  • Zubkov, M. V., Sleigh, M. A., Tarran, G. A., Burkill, P. H., & Leakey, R. J. G. (1998). Picoplanktonic community structure on an Atlantic transect from 50 degrees N to 50 degrees S (Article). Deep-Sea Research Part I-Oceanographic Research Papers, 45(8), 1339–1355. https://doi.org/10.1016/s0967-0637(98)00015-6.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would also like to thank the Indian Institute of Technology–Kanpur for providing a student fellowship to Aqib Ansari.

Funding

This work was supported by the Natural Environment Research Council award number NE/R000131/1 as part of the SUNRISE programme delivering national capability. The logical support for the middle Ganga surveying was funded by the Indian Institute of Technology–Kanpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Bowes.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1977 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bowes, M.J., Read, D.S., Joshi, H. et al. Nutrient and microbial water quality of the upper Ganga River, India: identification of pollution sources. Environ Monit Assess 192, 533 (2020). https://doi.org/10.1007/s10661-020-08456-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08456-2

Keywords

Navigation