Skip to main content
Log in

A new method based on the proximal bundle idea and gradient sampling technique for minimizing nonsmooth convex functions

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we combine the positive aspects of the gradient sampling (GS) and bundle methods, as the most efficient methods in nonsmooth optimization, to develop a robust method for solving unconstrained nonsmooth convex optimization problems. The main aim of the proposed method is to take advantage of both GS and bundle methods, meanwhile avoiding their drawbacks. At each iteration of this method, to find an efficient descent direction, the GS technique is utilized for constructing a local polyhedral model for the objective function. If necessary, via an iterative improvement process, this initial polyhedral model is improved by some techniques inspired by the bundle and GS methods. The convergence of the method is studied, which reveals that the global convergence property of our method is independent of the number of gradient evaluations required to establish and improve the initial polyhedral models. Thus, the presented method needs much fewer gradient evaluations in comparison to the original GS method. Furthermore, by means of numerical simulations, we show that the presented method provides promising results in comparison with GS methods, especially for large scale problems. Moreover, in contrast with some bundle methods, our method is not very sensitive to the accuracy of supplied gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ackooij, W., Frangioni, A.: Incremental bundle methods using upper models. SIAM J. Optim. 28(1), 379–410 (2018)

    Article  MathSciNet  Google Scholar 

  2. Astorino, A., Gaudioso, M.: Polyhedral separability through successive LP. J. Optim. Theory Appl. 112(2), 265–293 (2002)

    Article  MathSciNet  Google Scholar 

  3. Bagirov, A.M., Karmitsa, N., Mäkelä, M.M.: Introduction to Nonsmooth Optimization. Springer, Berlin (2014)

    Book  Google Scholar 

  4. Bonnans, J., Gilbert, J., Lemaréchal, C., Sagastizábal, C.A.: Numerical Optimization. Theoretical and Practical Aspects. Springer, Berlin (2006)

    MATH  Google Scholar 

  5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)

    Book  Google Scholar 

  6. Burke, J.V., Curtis, F.E., Lewis, A.S., Overton, M.L., Simões, L.E.A.: Gradient sampling methods for nonsmooth optimization. In: Bagirov, A.M., Gaudioso, M., Karmitsa, N., Mäkelä, M.M., Taheri, S. (eds.) Numerical Nonsmooth Optimization: State of the Art Algorithms, pp. 201–225. Springer, Cham (2020)

    Chapter  Google Scholar 

  7. Burke, J.V., Lewis, A.S., Overton, M.L.: A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J. Optim. 15(3), 751–779 (2005)

    Article  MathSciNet  Google Scholar 

  8. Curtis, F.E., Overton, M.L.: A sequential quadratic programming algorithm for nonconvex, nonsmooth constrained optimization. SIAM J. Optim. 22(2), 474–500 (2012)

    Article  MathSciNet  Google Scholar 

  9. Curtis, F.E., Que, X.: An adaptive gradient sampling algorithm for nonconvex nonsmooth optimization. Optim. Methods Softw. 28(6), 1302–1324 (2013)

    Article  MathSciNet  Google Scholar 

  10. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, Revised edn. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  11. Haarala, M., Miettinen, K., Mäkelä, M.M.: New limited memory bundle method for large-scale nonsmooth optimization. Optim. Methods Softw. 19(6), 673–692 (2004)

    Article  MathSciNet  Google Scholar 

  12. Hare, W., Sagastizábal, C., Solodov, M.: A proximal bundle method for nonsmooth nonconvex functions with inexact information. Comput. Optim. Appl. 63(1), 1–28 (2016)

    Article  MathSciNet  Google Scholar 

  13. Helou, E.S., Santos, A.S., Simões, L.E.A.: On the differentiability check in gradient sampling methods. Optim. Methods Softw. 31(5), 983–1007 (2016)

    Article  MathSciNet  Google Scholar 

  14. Helou, E.S., Santos, A.S., Simões, L.E.A.: A fast gradient and function sampling method for finite-max functions. Comput. Optim. Appl. 71(3), 673–717 (2018)

    Article  MathSciNet  Google Scholar 

  15. Kiwiel, K.: An aggregate subgradient method for nonsmooth convex minimization. Math. Program. 27, 320–341 (1983)

    Article  MathSciNet  Google Scholar 

  16. Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization. Springer, Berlin (1985)

    Book  Google Scholar 

  17. Kiwiel, K.C.: Proximity control in bundle methods for convex nondifferentiable minimization. Math. Program. 46, 105–122 (1990)

    Article  MathSciNet  Google Scholar 

  18. Kiwiel, K.C.: Convergence of the gradient sampling algorithm for nonsmooth nonconvex optimization. SIAM J. Optim. 18(2), 379–388 (2007)

    Article  MathSciNet  Google Scholar 

  19. Kiwiel, K.C.: A nonderivative version of the gradient sampling algorithm for nonsmooth nonconvex optimization. SIAM J. Optim. 20(4), 1983–1994 (2010)

    Article  MathSciNet  Google Scholar 

  20. Lavor, C., Liberti, L., Maculan, N.: Molecular Distance Geometry Problem, 2nd edn. Springer, New York (2009)

    MATH  Google Scholar 

  21. Lukšan, L., Tcma, M., Siska, M., Vlček, J., Ramesova, N.: Ufo 2002. Interactive system for universal functional optimization. Tech. rep., Institute of Computer Science, Academy of Sciences of the Czech Republic (2002)

  22. Lv, J., Pang, L., Xu, N., et al.: An infeasible bundle method for nonconvex constrained optimization with application to semi-infinite programming problems. Comput. Optim. Appl. 80(2), 397–427 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Mahdavi-Amiri, N., Shaeiri, M.: A conjugate gradient sampling method for nonsmooth optimization. 4OR 18, 73–90 (2019)

    Article  MathSciNet  Google Scholar 

  24. Mäkelä, M.M., Neittaanmäki, P.: Nonsmooth Optimization: Analysis and Algorithms with Applications to optimal control. World Scientific, Singapore (1992)

    Book  Google Scholar 

  25. Nikolova, M.: Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers. SIAM J. Numer. Anal. 40(3), 965–994 (2002)

    Article  MathSciNet  Google Scholar 

  26. Oliveira, W., Sagastizábal, C., Lemaréchal, C.: Convex proximal bundle methods in depth: a unified analysis for inexact oracles. Math. Program. 148(1–2), 241–277 (2014)

    Article  MathSciNet  Google Scholar 

  27. Oliveira, W., Solodov, M.: A doubly stabilized bundle method for nonsmooth convex optimization. Math. Program. 156(1), 125–159 (2016)

    Article  MathSciNet  Google Scholar 

  28. Outrata, J., Kocvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Springer, Dordrecht (1998)

    Book  Google Scholar 

  29. Schramm, H., Zowe, J.: A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2(1), 105–122 (1992)

    Article  MathSciNet  Google Scholar 

  30. Shor, N.Z.: Minimization Methods for Non-differentiable Functions. Springer, Berlin (1985)

    Book  Google Scholar 

  31. Skaaja, M.: Limited memory BFGS for nonsmooth optimization. Master’s thesis, New York University (2010)

  32. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the two anonymous referees and coordinating editor for their valuable comments, which improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shamsi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleknia, M., Shamsi, M. A new method based on the proximal bundle idea and gradient sampling technique for minimizing nonsmooth convex functions. Comput Optim Appl 77, 379–409 (2020). https://doi.org/10.1007/s10589-020-00213-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-020-00213-y

Keywords

Mathematics Subject Classification

Navigation