Skip to main content
Log in

Numerical Investigation of Particles in Warm-Particle Peening-Assisted High-Velocity Oxygen Fuel (WPPA-HVOF) Spraying

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Shot peening was induced by utilizing the particles that flow out of the nozzle in a WPPA-HVOF process. For investigation of the peening particles, a model was built to simulate the HVOF spraying process including the temperature, velocity, pressure field of the flame, and the reaction of kerosene oxidation. The effect of incident velocity, incident position, and the diameter on the in-flight particle was presented. Incident velocity is an important factor for the synchronization of shot peening and coating deposition. The critical velocity was introduced to describe the particle state after hitting onto the substrate. The velocity and temperature of small particles injected in the barrel were measured experimentally to verify the model reliability. Experimental results reveal that the particle injected in the barrel deposited onto the substrate and the particle injected out of the nozzle rebounded, which agrees well with the predicted result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. H.W. Sheng, Y.Q. Cheng, P.L. Lee, S.D. Shastri, and E. Ma, Atomic Packing in Multicomponent Aluminum-Based Metallic Glasses, Acta Mater., 2008, 56(20), p 6264-6272

    CAS  Google Scholar 

  2. S. Hong, Y. Wu, W. Gao, B. Wang, W. Guo, and J. Lin, Microstructural Characterisation and Microhardness Distribution of HVOF Sprayed WC-10Co-4Cr Coating, Surf. Eng., 2014, 30(1), p 53-58

    CAS  Google Scholar 

  3. M. Xie, S. Zhang, and M. Li, Comparative Investigation on HVOF Sprayed Carbide-Based Coatings, Appl. Surf. Sci., 2013, 273, p 799-805

    CAS  Google Scholar 

  4. W. Luo, U. Selvadurai, and W. Tillmann, Effect of Residual Stress on the Wear Resistance of Thermal Spray Coatings, J. Therm. Spray Technol., 2015, 25(1-2), p 321-330

    Google Scholar 

  5. H.J.C. Voorwald, P.C.F. Rocha, M.O.H. Cioffi, and M.Y.P. Costa, Residual Stress Influence on Fatigue Lifetimes of Electroplated AISI, 4340 High Strength Steel, Fatigue Fract. Eng. Mater. Struct., 2010, 30(11), p 1084-1097

    Google Scholar 

  6. P. Bansal, P.H. Shipway, and S.B. Leen, Residual Stresses in High-Velocity Oxy-Fuel Thermally Sprayed Coatings—Modelling the Effect of Particle Velocity and Temperature During the Spraying Process, Acta Mater., 2007, 55(15), p 5089-5101

    CAS  Google Scholar 

  7. S. Sampath, X.Y. Jiang, J. Matejicek, L. Prchlik, A. Kulkarni, and A. Vaidya, Role of Thermal Spray Processing Method on the Microstructure, Residual Stress and Properties of Coatings: An Integrated Study for Ni-5 wt%Al Bond Coats, Mater. Sci. Eng. A, 2004, 364(1-2), p 216-231

    Google Scholar 

  8. J. Stokes and L. Looney, Residual Stress in HVOF Thermally Sprayed Thick Deposits, Surf. Coat. Technol., 2004, 177, p 18-23

    Google Scholar 

  9. S. Amirhaghi, H.S. Reehal, R.J.K. Wood, and D.W. Wheeler, Diamond Coatings on Tungsten Carbide and Their Erosive Wear Properties, Surf. Coat. Technol., 2001, 135(2), p 126-138

    CAS  Google Scholar 

  10. G. Bolelli, L. Lusvarghi, T. Varis, E. Turunen, M. Leoni, P. Scardi, C.L. Azanza-Ricardo, and M. Barletta, Residual Stresses in HVOF-Sprayed Ceramic Coatings, Surf. Coat. Technol., 2008, 202(19), p 4810-4819

    CAS  Google Scholar 

  11. T. Suhonen, T. Varis, S. Dosta, M. Torrell, and J.M. Guilemany, Residual Stress Development in Cold Sprayed Al, Cu and Ti Coatings, Acta Mater., 2013, 61(17), p 6329-6337

    CAS  Google Scholar 

  12. X. Zhang, M. Watanabe, and S. Kuroda, Effects of Processing Conditions on the Mechanical Properties and Deformation Behaviors of Plasma-Sprayed Thermal Barrier Coatings: Evaluation of Residual Stresses and Mechanical Properties of Thermal Barrier Coatings on the Basis of In Situ Curvature Measurement Under a Wide Range of Spray Parameters, Acta Mater., 2013, 61(4), p 1037-1047

    CAS  Google Scholar 

  13. R. Ghelichi, S. Bagherifard, D. MacDonald, I. Fernandez-Pariente, B. Jodoin, and M. Guagliano, Experimental and Numerical Study of Residual Stress Evolution in Cold Spray Coating, Appl. Surf. Sci., 2014, 288, p 26-33

    CAS  Google Scholar 

  14. S. Wang, Y. Li, M. Yao, and R. Wang, Compressive Residual Stress Introduced by Shot Peening, J. Mater. Process. Technol., 1998, 73(1-3), p 64-73

    Google Scholar 

  15. S. Khameneh Asl, M.H. Sohi, and S.M.M. Hadavi, The Effect of the Heat Treatment on Residual Stresses in HVOF Sprayed WC-Co Coating, Mater. Sci. Forum, 2004, 465, p 427-432

    Google Scholar 

  16. M.S. Zoei, M.H. Sadeghi, and M. Salehi, Effect of Grinding Parameters on the Wear Resistance and Residual Stress of HVOF-Deposited WC-10Co-4Cr Coating, Surf. Coat. Technol., 2016, 307, p 886-891

    CAS  Google Scholar 

  17. M. Hasan, J. Stokes, L. Looney, and M.S.J. Hashmi, Effect of Spray Parameters on Residual Stress Build-Up of HVOF Sprayed Aluminium/Tool-Steel Functionally Graded Coatings, Surf. Coat. Technol., 2008, 202(16), p 4006-4010

    CAS  Google Scholar 

  18. U. Selvadurai, P. Hollingsworth, I. Baumann, B. Hussong, W. Tillmann, S. Rausch, and D. Biermann, Influence of the Handling Parameters on Residual Stresses of HVOF-Sprayed WC-12Co Coatings, Surf. Coat. Technol., 2015, 268, p 30-35

    CAS  Google Scholar 

  19. A.G.M. Pukasiewicz, H.E. de Boer, G.B. Sucharski, R.F. Vaz, and L.A.J. Procopiak, The Influence of HVOF Spraying Parameters on the Microstructure, Residual Stress and Cavitation Resistance of FeMnCrSi Coatings, Surf. Coat. Technol., 2017, 327, p 158-166

    CAS  Google Scholar 

  20. A.R.E. Singer, Simultaneous Spray Deposition and Peening of Metals (SSP), Met. Sci. J., 1984, 11(1), p 99-104

    CAS  Google Scholar 

  21. X.B. Liang, J.C. Shang, Y.X. Chen, Z.D. Zhou, Z.B. Zhang, and B.S. Xu, Influence of Ceramic Particles and Process Parameters on Residual Stress of Flame-Sprayed Fe-Based Coatings, Surf. Coat. Technol., 2018, 354, p 10-17

    CAS  Google Scholar 

  22. O. Unal and R. Varol, Surface Severe Plastic Deformation of AISI, 304 Via Conventional Shot Peening, Severe Shot Peening and Repeening, Appl. Surf. Sci., 2015, 351, p 289-295

    CAS  Google Scholar 

  23. G.S. Junior, H.J.C. Voorwald, L.F.S. Vieira, M.O.H. Cioffi, and R.G. Bonora, Evaluation of WC-10Ni Thermal Spray Coating with Shot Peening on the Fatigue Strength of AISI, 4340 Steel, Proc. Eng., 2010, 2(1), p 649-656

    CAS  Google Scholar 

  24. Y. Chen, J. Shang, X. Liang, H. Wang, and Z. Zhou, Warm-Particle Peening Assisted HVOF Spraying: A New Process to Improve the Coating Performances, Surf. Coat. Technol., 2019, 367, p 135-147

    CAS  Google Scholar 

  25. E. Dongmo, M. Wenzelburger, and R. Gadow, Analysis and Optimization of the HVOF Process by Combined Experimental and Numerical Approaches, Surf. Coat. Technol., 2008, 202(18), p 4470-4478

    CAS  Google Scholar 

  26. M. Li and P.D. Christofides, Modeling and Analysis of HVOF Thermal Spray Process Accounting for Powder Size Distribution, Chem. Eng. Sci., 2003, 58(3), p 849-857

    CAS  Google Scholar 

  27. M. Li, D. Shi, and P.D. Christofides, Feedback Control of HVOF Thermal Spray Process: A Study of the Effect of Process Disturbances on Closed-Loop Performance, Comput. Aided Chem. Eng., 2003, 15, p 1193-1198

    Google Scholar 

  28. M. Li, D. Shi, and P.D. Christofides, Diamond Jet Hybrid HVOF Thermal Spray: Gas-Phase and Particle Behavior Modeling and Feedback Control Design, Ind. Eng. Chem. Res., 2004, 43(14), p 3632-3652

    CAS  Google Scholar 

  29. D. Cheng, Q. Xu, G. Tapaga, and E.J. Lavernia, A Numerical Study of High-Velocity Oxygen Fuel Thermal Spraying Process, Part I: Gas Phase Dynamics, Metall. Mater. Trans. A, 2001, 32(7), p 1609-1620

    Google Scholar 

  30. T. Shamim, C. Xia, and P. Mohanty, Modeling and Analysis of Combustion Assisted Thermal Spray Processes, Int. J. Therm. Sci., 2007, 46(8), p 755-767

    CAS  Google Scholar 

  31. S. Kamnis, S. Gu, T.J. Lu, and C. Chen, Computational Simulation of Thermally Sprayed WC-Co Powder, Comput. Mater. Sci., 2008, 43(4), p 1172-1182

    CAS  Google Scholar 

  32. X. Wang, Q. Song, and Z. Yu, Numerical Investigation of Combustion and Flow Dynamics in a High Velocity Oxygen-Fuel Thermal Spray Gun, J. Therm. Spray Technol., 2016, 25(3), p 1-10

    Google Scholar 

  33. M. Li and P.D. Christofides, Computational Study of Particle in-Flight Behavior in the HVOF Thermal Spray Process, Chem. Eng. Sci., 2006, 61(19), p 6540-6552

    CAS  Google Scholar 

  34. J. Pan, S. Hu, L. Yang, K. Ding, and B. Ma, Numerical Analysis of Flame and Particle Behavior in an HVOF Thermal Spray Process, Mater Des., 2016, 96, p 370-376

    Google Scholar 

  35. Z. Zhou, X. Liang, Y. Chen, B. Shen, J. Shang, and Z. Cai, Effects of Al Addition on Microstructure and Wear Resistance of High-Velocity-Oxygen-Fuel-Sprayed FeCoNiCrMn High Entropy Alloy Coating, Sci. Adv. Mater., 2019, 11(5), p 685-693

    CAS  Google Scholar 

  36. J.M. Park, J. Moon, J.W. Bae, J.J. Min, J. Park, S. Lee, and H.S. Kim, Strain Rate Effects of Dynamic Compressive Deformation on Mechanical Properties and Microstructure of CoCrFeMnNi High-Entropy Alloy, Mater. Sci. Eng. A, 2018, 719, p 155-163

    CAS  Google Scholar 

  37. J.I. Lee, H.S. Oh, J.H. Kim, and E.S. Park, Effect of Configurational Entropy of Mixing on Thermophysical Properties in Single Phase FCC Solid Solutions with Multi-Principal Elements, Korean J. Met. Mater., 2017, 55(1), p 1-9

    CAS  Google Scholar 

  38. S. Emami, H. Jafari, and Y. Mahmoudi, Effects of Combustion Model and Chemical Kinetics in Numerical Modeling of Hydrogen-Fueled Dual-Stage HVOF System, J. Therm. Spray Technol., 2019, 28(3), p 333-345

    CAS  Google Scholar 

  39. S. Kamnis and S. Gu, Numerical Modelling of Propane Combustion in a High Velocity Oxygen-Fuel Thermal Spray Gun, Chem. Eng. Process., 2006, 45(4), p 246-253

    CAS  Google Scholar 

  40. S. Kamnis and S. Gu, 3-D Modelling of Kerosene-Fuelled HVOF Thermal Spray Gun, Chem. Eng. Sci., 2006, 61(16), p 5427-5439

    CAS  Google Scholar 

  41. A. Dolatabadi, J. Mostaghimi, and V. Pershin, Effect of a Cylindrical Shroud on Particle Conditions in High Velocity Oxy-Fuel Spray Process, Sci. Technol. Adv. Mater., 2002, 137(1), p 214-224

    Google Scholar 

  42. X. Yang and S. Eidelman, Numerical Analysis of a High-Velocity Oxygen-Fuel Thermal Spray System, J. Therm. Spray Technol., 1996, 5(2), p 175-184

    CAS  Google Scholar 

  43. H. Tabbara, S. Gu, and D.G. McCartney, Computational Modelling of Titanium Particles in Warm Spray, Comput. Fluids, 2011, 44(1), p 358-368

    CAS  Google Scholar 

  44. M.N. Khan and T. Shamim, Effect of Operating Parameters on a Dual-Stage High Velocity Oxygen Fuel Thermal Spray System, J. Therm. Spray Technol., 2014, 23(6), p 910-918

    CAS  Google Scholar 

  45. M.N. Khan and T. Shamim, Investigation of a Dual-Stage High Velocity Oxygen Fuel Thermal Spray System, Appl. Energy, 2014, 130, p 853-862

    CAS  Google Scholar 

  46. M. Li and P.D. Christofides, Modeling and Control of High-Velocity Oxygen-Fuel (HVOF) Thermal Spray: A Tutorial Review, J. Therm. Spray Technol., 2009, 18(5-6), p 753-768

    CAS  Google Scholar 

  47. D. Cheng, Q. Xu, E. Lavernia, and G. Trapaga, The Effect of Particle Size and Morphology on the In-Flight Behavior of Particles During High-Velocity Oxyfuel Thermal Spraying, Metall. Mater. Trans. B, 2001, 32(3), p 525-535

    Google Scholar 

  48. H. Jafari, S. Emami, and Y. Mahmoudi, Numerical Investigation of Dual-Stage High Velocity Oxy-Fuel (HVOF) Thermal Spray Process: A Study on Nozzle Geometrical Parameters, Appl. Therm. Eng., 2017, 111, p 745-758

    CAS  Google Scholar 

  49. A. Haider and O. Levenspiel, Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles, Powder Technol., 1989, 58(1), p 63-70

    CAS  Google Scholar 

  50. W. Ranz and W.R. Marshall, Evaporation from Drops, Chem. Eng. Prog., 1952, 48(3), p 141-146

    CAS  Google Scholar 

  51. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394

    CAS  Google Scholar 

  52. J.Y. He, C. Zhu, D.Q. Zhou, W.H. Liu, T.G. Nieh, and Z.P. Lu, Steady State Flow of the FeCoNiCrMn High Entropy Alloy at Elevated Temperatures, Intermetallics, 2014, 55, p 9-14

    CAS  Google Scholar 

  53. S. Zimmermann, E. Vogli, M. Kauffeldt, M. Abdulgader, B. Krebs, B. Rüther, K. Landes, J. Schein, and W. Tillmann, Supervision and Measuring of Particle Parameters During the Wire-Arc Spraying Process with the Diagnostic Systems Accuraspray-g3 and LDA (Laser-Doppler-Anemometry), J. Therm. Spray Technol., 2010, 19(4), p 745-755

    CAS  Google Scholar 

  54. H. Kobatake, Y. Kurokawa, H. Fukuyama, N. Sasajima, Y. Yamaguchi, and Y. Yamada, Dual-Wavelength Reflectance-Ratio (DWR) Method Applied to High-Temperature Metals, Proc. SICE Annu. Conf., 2017, 2017, p 427-428

    Google Scholar 

  55. H. Tabbara and S. Gu, A Study of Liquid Droplet Disintegration for the Development of Nanostructured Coatings, AlChE J., 2012, 58(11), p 3533-3544

    CAS  Google Scholar 

  56. Z. Zhou, J. Shang, Y. Chen, X. Liang, B. Shen, and Z. Zhang, Synchronous Shot Peening Applied on HVOF for Improvement on Wear Resistance of Fe-Based Amorphous Coating, Coatings, 2020, 10(187), p 2-14

    Google Scholar 

  57. E. Sadeghimeresht, N. Markocsan, and P. Nylen, Microstructural Characteristics and Corrosion behavior of HVAF-and HVOF-Sprayed Fe-Based Coatings, Surf. Coat. Technol., 2017, 318, p 365-373

    CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by the National Key R&D Program of China (Grant No. 2018YFC1902400), National Natural Science Foundation of China (Grant No. 51975582) and the program of China Scholarships Council (No. 201906420072)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baolong Shen or Xiubing Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Chen, Y., Hu, Z. et al. Numerical Investigation of Particles in Warm-Particle Peening-Assisted High-Velocity Oxygen Fuel (WPPA-HVOF) Spraying. J Therm Spray Tech 29, 1682–1694 (2020). https://doi.org/10.1007/s11666-020-01063-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01063-0

Keywords

Navigation