Skip to main content
Log in

Role of the Wild Carob as Biosorbent and as Precursor of a New High-Surface-Area Activated Carbon for the Adsorption of Methylene Blue

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Wild carob (WC), an abundant and unused lignocellulosic waste in Algeria, has been used as an inexpensive biosorbent for the elimination of methylene blue (MB) from the aqueous solution and as a precursor for the preparation of a new activated carbon by chemical activation with ZnCl2 (ACWC). The adsorbent materials were characterized by N2 physisorption, SEM/EDX, FTIR spectroscopy and isoelectric point (pHpzc) measurements. The adsorption performance of WC and ACWC was estimated for MB at different adsorption variables, such as solution pH (2–11), MB initial concentrations (25–200 mg L−1), time (0–1500 min), adsorbent dose (0.25–2.00 g L−1), temperature (10–40 °C) and NaCl concentration (0.0–0.5 M). The obtained results indicate that WC has an acidic surface due to the presence of carboxyl and phenol groups that play an important role in the fixation of cationic dye molecules, obtaining a maximum monolayer adsorption capacity of 84 mg g−1 at natural pH (7.5) and 40 °C. However, this adsorption performance was much higher in the case of the ACWC sample (218 mg g−1). From the equilibrium data, the Freundlich, Langmuir, Sips and Redlich–Peterson isotherms parameters of both samples were calculated and compared. For WC, the experimental data fitted well with Redlich–Peterson, Langmuir and Sips isotherm models, while in the case of ACWC they were best represented by the Redlich–Peterson and Sips isotherms. The adsorption kinetics data were found to follow the pseudo-second-order model for WC and the pseudo-first-order model for ACWC. The thermodynamic parameters suggest that, for both materials, the process was endothermic and spontaneous in the range of temperatures studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lairini, S.; El Mahtal, K.; Miyah, Y.; Tanji, K.; Guissi, S.; Boumchita, S.; Zerrouq, F.: The adsorption of Crystal violet from aqueous solution by using potato peels (Solanum tuberosum): equilibrium and kinetic studies. J. Mater. Environ. Sci. 8, 3252–3261 (2017)

    Google Scholar 

  2. Saha, P.; Chowdhury, S.; Gupta, S.; Kumar, I.: Insight into adsorption equilibrium, kinetics and thermodynamics of Malachite Green onto clayey soil of Indian origin. Chem. Eng. J. 165, 874–882 (2010)

    Article  Google Scholar 

  3. Banerjee, S.; Sharma, G.C.; Gautam, R.K.; Chattopadhyaya, M.C.; Upadhyay, S.N.; Sharma, Y.C.: Removal of Malachite Green, a hazardous dye from aqueous solutions using Avena sativa (oat) hull as a potential adsorbent. J. Mol. Liq. 213, 162–172 (2016)

    Article  Google Scholar 

  4. Amode, J.O.; Santos, J.H.; Md. Alam, Z.; Mirza, A.H.; Mei, C.C.: Adsorption of methylene blue from aqueous solution using untreated and treated (Metroxylon spp.) waste adsorbent: equilibrium and kinetics studies. Int. J. Ind. Chem. 7, 333–345 (2016)

    Article  Google Scholar 

  5. Miyah, Y.; Lahrichi, A.; Idrissi, M.; Boujraf, S.; Taouda, H.; Zerrouq, F.: Assessment of adsorption kinetics for removal potential of Crystal Violet dye from aqueous solutions using Moroccan pyrophyllite. J. Assoc. Arab. Univ. Basic. Appl. Sci. 23, 20–28 (2017)

    Google Scholar 

  6. Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P.: Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77, 247–255 (2001)

    Article  Google Scholar 

  7. Güzel, F.; Sayǧili, H.; Sayǧili, G.A.; Koyuncu, F.: Decolorisation of aqueous crystal violet solution by a new nanoporous carbon: equilibrium and kinetic approach. J. Ind. Eng. Chem. 20, 3375–3386 (2014)

    Article  Google Scholar 

  8. Khan, T.A.; Sharma, S.; Ali, I.; Khan, T.A.; Sharma, S.; Ali, I.: Adsorption of Rhodamine B dye from aqueous solution onto acid activated mango (Magnifera indica) leaf powder: equilibrium, kinetic and thermodynamic studies. J. Toxicol. Environ. Heal. Sci. 3, 286–297 (2011)

    Google Scholar 

  9. Jain, S.; Jayaram, R.V.: Removal of basic dyes from aqueous solution by low-cost adsorbent: wood apple shell (Feronia acidissima). Desalination 250, 921–927 (2010)

    Article  Google Scholar 

  10. Miyah, Y.; Idrissi, M.; Zerrouq, F.: Etude et Modélisation de la Cinétique d’Adsorption du Bleu de Méthylène sur les Adsorbants Argileux (Pyrophillite, Calcite) [Study and Modeling of the Kinetics Methylene blue Adsorption on the Clay Adsorbents (Pyrophillite, Calcite)]. J. Mater. Environ. Sc. 6, 699–712 (2015)

    Google Scholar 

  11. Mohammed, M.A.; Shitu, A.; Ibrahim, A.: Removal of methylene blue using low cost adsorbent: a review. Res. J. Chem. Sci. 4, 91–102 (2014)

    Google Scholar 

  12. Alizadeh, A.; Parizanganeh, A.; Yaftian, M.; Zamani, A.: Application of cellulosic biomass for removal of cationic dye rhodamine 6G from aqueous solutions. Int. J. Waste. Resour. 6, 256 (2016)

    Google Scholar 

  13. Mane, V.S.; Vijay Babu, P.V.: Kinetic and equilibrium studies on the removal of Congo red from aqueous solution using Eucalyptus wood (Eucalyptus globulus) sawdust. J. Taiwan. Inst. Chem. Eng. 44, 81–88 (2013)

    Article  Google Scholar 

  14. Ahmad, A.; Mohd-Setapar, S.H.; Chuong, C.S.; Khatoon, A.; Wani, W.A.; Kumard, R.; Rafatullah, M.: Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Adv. 5, 30801–30818 (2015)

    Article  Google Scholar 

  15. Ghaedi, M.; Hassanzadeh, A.; Kokhdan, S.N.: Multiwalled carbon nanotubes as adsorbents for the kinetic and equilibrium study of the removal of Alizarin red S and morin. J. Chem. Eng. Data 56, 2511–2520 (2011)

    Article  Google Scholar 

  16. Shayesteh, H.; Rahbar-Kelishami, A.; Norouzbeigi, R.: Adsorption of malachite green and crystal violet cationic dyes from aqueous solution using pumice stone as a low-cost adsorbent: kinetic, equilibrium, and thermodynamic studies. Desalin. Water Treat. 57, 12822–12831 (2016)

    Article  Google Scholar 

  17. Talarposhti, A.M.; Donnelly, T.; Anderson, G.K.: Colour removal from a simulated dye wastewater using a two-phase anaerobic packed bed reactor. Water Res. 35, 425–432 (2001)

    Article  Google Scholar 

  18. Aydin, H.; Baysal, G.; Bulut, Y.: Utilization of walnut shells (Juglans regia) as an adsorbent for the removal of acid dyes. Desalin. Water Treat. 2, 141–150 (2009)

    Article  Google Scholar 

  19. Priya, R.; Nithya, R.; Anuradha, R.; Kamachi, T.: Removal of colour from crystal violet dye using low cost adsorbents. Int. J. Chem. Tech. Res. 6, 4346–4351 (2014)

    Google Scholar 

  20. Sen, T.K.; Afroze, S.; Ang, H.M.: Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiate. Water Air Soil Pollut. 218, 499–515 (2011)

    Article  Google Scholar 

  21. Chowdhury, S.; Saha, P.: Sea shell powder as a new adsorbent to remove Basic Green 4 (Malachite Green) from aqueous solutions: equilibrium, kinetic and thermodynamic studies. Chem. Eng. J. 164, 168–177 (2010)

    Article  Google Scholar 

  22. Wang, B.E.; Hu, Y.Y.; Xie, L.; Peng, K.: Biosorption behavior of azo dye by inactive CMC immobilized Aspergillus fumigatus beads. Bioresour. Technol. 99, 794–800 (2008)

    Article  Google Scholar 

  23. Saygili, H.; Güzel, F.; Önal, Y.: Conversion of grape industrial processing waste to activated carbon sorbent and its performance in cationic and anionic dyes adsorption. J. Clean. Prod. 93, 84–93 (2015)

    Article  Google Scholar 

  24. Liu, C.H.; Wu, J.S.; Chiu, H.C.; Suen, S.Y.; Chu, K.H.: Removal of anionic reactive dyes from water using anion exchange membranes as adsorbers. Water Res. 41, 1491–1500 (2007)

    Article  Google Scholar 

  25. Gündüz, F.; Bayrak, B.: Biosorption of malachite green from an aqueous solution using pomegranate peel: equilibrium modelling, kinetic and thermodynamic studies. J. Mol. Liq. 243, 790–798 (2017)

    Article  Google Scholar 

  26. Nacke, H.; Gonçalves, A.C.; Coelho, G.F.; Schwantes, D.; Campagnolo, M.A.; Leismann, E.A.V.; Junior, E.C.; Miola, A.J.: Removal of Cd (II) from water using the waste of jatropha fruit (Jatropha curcas L.). Appl. Water Sci. 7, 3207–3222 (2017)

    Article  Google Scholar 

  27. Bounaas, M.; Bouguettoucha, A.; Chebli, D.; Reffas, A.; Harizi, I.; Rouabah, F.; Amrane, A.: High efficiency of methylene blue removal using a novel low-cost acid treated forest wastes, Cupressus semperirens cones: experimental results and modeling. Part. Sci. Technol. 37, 500–509 (2019)

    Article  Google Scholar 

  28. Reffas, A.; Bouguettoucha, A.; Chebli, D.; Amrane, A.: Adsorption of ethyl violet dye in aqueous solution by forest wastes, wild carob. Desalin. Water Treat. 57, 9859–9870 (2016)

    Article  Google Scholar 

  29. Grassi, P.; Reis, C.; Drumm, F.C.; Georgin, J.; Tonato, D.; Escudero, L.B.; Kuhn, R.; Jahn, S.L.; Dotto, G.L.: Biosorption of crystal violet dye using inactive biomass of the fungus Diaporthe schini. Water Sci. Technol. 79(4), 709–717 (2019)

    Article  Google Scholar 

  30. Bounaas, M.; Bouguettoucha, A.; Chebli, D.; Reffas, A.; Gatica, J.M.; Amrane, A.: Batch adsorption of synthetic dye by Maclura Pomifera, a new eco-friendly waste biomass: experimental studies and modeling. Int. J. Chem. React. Eng (2019). https://doi.org/10.1515/ijcre-2018-0063

    Article  Google Scholar 

  31. Sulaka, M.T.; Yatmaz, H.C.: Removal of textile dyes from aqueous solutions with eco-friendly biosorbent. Desalin. Water Treat. 37, 169–177 (2012)

    Article  Google Scholar 

  32. Radhakrishnana, K.; Sethuramana, L.; Panjanathana, R.; Natarajana, A.; Solaiappan, V.; Thilagaraja, W.R.: Biosorption of heavy metals from actual electroplating wastewater using encapsulated Moringa oleifera beads in fixed bed column. Desalin. Water Treat. 57, 3572–3587 (2014)

    Article  Google Scholar 

  33. Haydar, S.; Ahmad, M.F.; Hussain, G.: Evaluation of new biosorbents prepared from immobilized biomass of Candida sp. for the removal of nickel ions. Desalin. Water Treat. 57(12), 5601–5613 (2015)

    Article  Google Scholar 

  34. Sadaf, S.; Bhatti, H.N.; Nausheen, S.; Noreen, S.: Potential use of low-cost lignocellulosic waste for the removal of direct violet 51 from aqueous solution: equilibrium and breakthrough studies. Arch. Environ. Contam. Toxicol. 66, 557–571 (2014)

    Article  Google Scholar 

  35. Sadaf, S.; Bhatti, H.N.; Nausheen, S.; Amin, M.: Application of a novel lignocellulosic biomaterial for the removal of Direct Yellow 50 dye from aqueous solution: batch and column study. J. Taiwan. Inst. Chem. Eng. 47, 160–170 (2015)

    Article  Google Scholar 

  36. Alomaa, I.C.; Rodrıgueza, I.; Calerob, M.; Blazquezb, G.: Biosorption of Cr6 + from aqueous solution by sugarcane bagasse. Desalin. Water Treat. 59(31–33), 5912–5922 (2013)

    Google Scholar 

  37. Ferreira, R.M.; Oliveira, N.M.; Lima, L.L.S.; Campista, A.L.D.M.; Stapelfeldt, D.M.A.: Adsorption of indigo carmine on Pistia stratiotes dry biomass chemically modified. Environ. Sci. Pollut. Res. Int. 26, 28614–28621 (2019)

    Article  Google Scholar 

  38. Din, M.; Bhatti, H.N.; Yasir, M.; Ashraf, A.: Direct dye biosorption by immobilized barley husk. Desalin. Water Treat. 57, 9263–9271 (2016)

    Article  Google Scholar 

  39. Zhanga, Y.Z.; Li, J.; Zhao, J.; Bian, W.; Li, Y.; Wanga, X.: Adsorption behavior of modified Iron stick yam skin with Polyethyleneimine as a potential biosorbent for the removal of anionic dyes in single and ternary systems at low temperature. Bioresour. Technol. 222, 285–293 (2016)

    Article  Google Scholar 

  40. Yang, J.X.; Hong, G.B.: Adsorption behavior of modified Glossogyne tenuifolia leaves as a potential biosorbent for the removal of dyes. J. Mol. Liq. 252, 289–295 (2018)

    Article  Google Scholar 

  41. Deng, H.; Yang, L.; Tao, G.; Dai, J.: Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation-Application in methylene blue adsorption from aqueous solution. J. Hazard. Mater. 166, 1514–1521 (2009)

    Article  Google Scholar 

  42. Msaada, A.; Belbahloula, M.; El Hajjajib, S.; Beakoua, B.H.; Houssainia, M.A.; Belhajjiaa, C.; Aassilac, H.; Zouhria, A.; Anouara, A.: Industrial wastewater decolorization by activated carbon from Ziziphus lotus. Desalin. Water Treat. 126, 296–305 (2018)

    Article  Google Scholar 

  43. Senthilkumaar, S.; Varadarajan, P.R.; Porkodi, K.; Subbhuraam, C.V.: Adsorption of methylene blue onto jute fiber carbon: kinetics and equilibrium studies. J. Colloid Interface Sci. 284, 78–82 (2005)

    Article  Google Scholar 

  44. Amin, M.T.; Alazba, A.A.; Shafiq, M.: Comparative study for adsorption of methylene blue dye on biochar derived from orange peel and banana biomass in aqueous solutions. Environ. Monit. Assess. 191, 735 (2019)

    Article  Google Scholar 

  45. Sun, Z.; Srinivasakannan, C.; Liang, J.; Duan, X.: Preparation and characterization of shiitake mushroom-based activated carbon with high adsorption capacity. Arab. J. Sci. Eng. 44, 5443–5456 (2019)

    Article  Google Scholar 

  46. Bengoa, C.; Fabregat, A.; Font, J.; Stöber, F.: Reduction, Modification and Valorisation of Sludge (REMOVALS). IWA Publishing, London (2011)

    Google Scholar 

  47. Bandara, J.; Mielczarski, J.A.; Kiwi, J.: Molecular mechanism of surface recognition. Azo dyes degradation on Fe, Ti, and Al oxides through metal sulfonate complexes. Langmuir 15, 7670–7679 (1999)

    Article  Google Scholar 

  48. Stavropoulos, G.G.: Precursor materials suitability for super activated carbons production. Fuel Process. Technol. 86, 1165–1173 (2005)

    Article  Google Scholar 

  49. Budinova, T.K.; Petrov, N.V.; Minkova, V.N.; Gergova, K.M.: Removal of metal ions from aqueous solution by activated carbons obtained from different raw materials. J. Chem. Technol. Biotechnol. 60, 177–182 (1994)

    Article  Google Scholar 

  50. Escudero, C.; Gabaldón, C.; Marzal, P.; Villaescusa, I.: Effect of EDTA on divalent metal adsorption onto grape stalk and exhausted coffee wastes. J. Hazard. Mater. 152, 476–485 (2008)

    Article  Google Scholar 

  51. Azouaou, N.; Sadaoui, Z.; Djaafri, A.; Mokaddem, H.: Adsorption of cadmium from aqueous solution onto untreated coffee grounds: equilibrium, kinetics and thermodynamics. J. Hazard. Mater. 184, 126–134 (2010)

    Article  Google Scholar 

  52. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  Google Scholar 

  53. Freundlich, H.M.: Over the adsorption in solution. J. Phys. Chem. 57, 385–470 (1906)

    Google Scholar 

  54. Dotto, G.L.; Vieira, M.L.G.; Esquerdo, V.M.; Pinto, L.A.A.: Equilibrium and thermodynamics of azo dyes biosorption onto Spirulina platensis. Braz. J. Chem. Eng. 30, 13–21 (2013)

    Article  Google Scholar 

  55. Redlich, O.; Peterson, D.L.: A useful Adsorption Isotherm. J. Phys. Chem. 63, 1024–1026 (1959)

    Article  Google Scholar 

  56. Rouquerol, F.; Rouquerol, J.; Sing, K.: Interpretation of physisorption isotherms at the gas-solid interface. In: Rouquerol, F., Rouquerol, J., Sing, K. (eds.) Adsorption by powders and porous solids, pp. 93–115. Academic Press, London (1999)

    Chapter  Google Scholar 

  57. Stavropoulos, G.G.; Zabaniotou, A.A.: Production and characterization of activated carbons from olive-seed waste residue. Microporous Mesoporous Mater. 82, 79–85 (2005)

    Article  Google Scholar 

  58. Djilani, C.; Zaghdoudi, R.; Modarressi, A.; Rogalski, M.; Djazi, F.; Lallam, A.: Elimination of organic micropollutants by adsorption on activated carbon prepared from agricultural waste. Chem. Eng. J. 189, 203–212 (2012)

    Article  Google Scholar 

  59. Ozdemir, I.; Şahin, M.; Orhan, R.; Erdem, M.: Preparation and characterization of activated carbon from grape stalk by zinc chloride activation. Fuel Process. Technol. 125, 200–206 (2014)

    Article  Google Scholar 

  60. Marrakchi, F.; Ahmed, M.J.; Khanday, W.A.; Asif, M.; Hameed, B.H.: Mesoporous-activated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue. Int. J. Biol. Macromol. 98, 233–239 (2017)

    Article  Google Scholar 

  61. Djilani, C.; Zaghdoudi, R.; Djazi, F.; Bouchekimad, B.; Lallame, A.; Modarressif, A.; Rogalski, M.: Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon. J. Taiwan. Inst. Chem. Eng. 53, 112–121 (2015)

    Article  Google Scholar 

  62. Liou, T.H.: Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chem. Eng. J. 158, 129–142 (2010)

    Article  Google Scholar 

  63. Durán-Valle, C.J.; Gómez-Corzo, M.; Pastor-Villegas, J.; Gómez-Serrano, V.: Study of cherry stones as raw material in preparation of carbonaceous adsorbents. J. Anal. Appl. Pyrolysis 73, 59–67 (2005)

    Article  Google Scholar 

  64. Liang, S.; Guo, X.; Feng, N.; Tian, Q.: Isotherms, kinetics and thermodynamic studies of adsorption of Cu2+ from aqueous solutions by Mg2+/K+ type orange peel adsorbents. J. Hazard. Mater. 174, 756–762 (2010)

    Article  Google Scholar 

  65. Park, S.H.; McClain, S.; Tian, Z.R.; Suib, S.L.; Karwacki, C.: Surface and bulk measurements of metals deposited on activated carbon. Chem. Mater. 9, 176–183 (1997)

    Article  Google Scholar 

  66. Njoku, V.O.; Hameed, B.H.: Preparation and characterization of activated carbon from corncob by chemical activation with H3PO4for 2,4-dichlorophenoxyacetic acid adsorption. Chem. Eng. J. 173, 391–399 (2011)

    Article  Google Scholar 

  67. Daoud, M.; Benturki, O.; Kecira, Z.; Girods, P.; Donnot, A.: Removal of reactive dye (BEZAKTIV Red S-MAX) from aqueous solution by adsorption onto activated carbons prepared from date palm rachis and jujube stones. J. Mol. Liq. 243, 799–809 (2017)

    Article  Google Scholar 

  68. Zawadzki, J.: IR spectroscopic investigations of the mechanism of oxidation of carbonaceous films with HNO3 solution. Carbon 18, 281–285 (1980)

    Article  Google Scholar 

  69. Socrates, G.: Infrared and raman characteristic group frequencies, 3rd edn. Chichester, New York (1994)

    Google Scholar 

  70. Moreno-Castilla, C.; Carrasco-Marín, F.; Mueden, A.: The creation of acid carbon surfaces by treatment with (NH4)2S2O8. Carbon N. Y. 35, 1619–1626 (1997)

    Article  Google Scholar 

  71. Ahmad, A.L.; Loh, M.M.; Aziz, J.A.: Preparation and characterization of activated carbon from oil palm wood and its evaluation on Methylene blue adsorption. Dye Pigment 75, 263–272 (2007)

    Article  Google Scholar 

  72. Cengiz, G.; Aytar, P.; Şam, M.; Çabuk, A.: Removal of reactive dyes using magnetically separable trametes versicolor cells as a new composite biosorbent. Sep. Sci. Technol. 49, 1860–1871 (2014)

    Article  Google Scholar 

  73. Albarelli, J.Q.; Rabelo, R.B.; Santos, D.T.; Beppu, M.M.; Meireles, M.A.A.: Effects of supercritical carbon dioxide on waste banana peels for heavy metal removal. J. Supercrit. Fluids 58(3), 343–351 (2011)

    Article  Google Scholar 

  74. Khanday, W.A.; Marrakchi, F.; Asif, M.; Hameed, B.H.: Mesoporous zeolite–activated carbon composite from oil palm ash as an effective adsorbent for methylene blue. J. Taiwan Inst. Chem. Eng. 70, 32–41 (2017)

    Article  Google Scholar 

  75. Hameed, B.H.: Evaluation of papaya seeds as a novel non-conventional low-cost adsorbent for removal of methylene blue. J. Hazard. Mater. 162, 939–944 (2009)

    Article  Google Scholar 

  76. Patil, A.K.; Shrivastava, V.S.: Alternanthera bettzichiana plant powder as low cost adsorbent for removal of congo red from aqueous solution. Int. J. Chem. Tech. Res. 2, 842–850 (2010)

    Google Scholar 

  77. Dahri, M.K.; Kooh, M.R.R.; Lim, L.B.L.: Water remediation using low cost adsorbent walnut shell for removal of malachite green: equilibrium, kinetics, thermodynamic and regeneration studies. J. Environ. Chem. Eng. 2, 1434–1444 (2014)

    Article  Google Scholar 

  78. Hu, Y.; Guo, T.; Ye, X.; Li, Q.; Guo, M.; Liu, H.; Wu, Z.: Dye adsorption by resins: effect of ionic strength on hydrophobic and electrostatic interactions. Chem. Eng. J. 228, 392–397 (2013)

    Article  Google Scholar 

  79. Khattri, S.D.; Singh, M.K.: Removal of malachite green from dye wastewater using neem sawdust by adsorption. J. Hazard. Mater. 167, 1089–1094 (2009)

    Article  Google Scholar 

  80. Cherifi, H.; Bentahar, F.; Hanini, S.: Kinetic studies on the adsorption of methylene blue onto vegetal fiber activated carbons. Appl. Surf. Sci. 282, 52–59 (2013)

    Article  Google Scholar 

  81. Tan, I.A.W.; Hameed, B.H.; Ahmad, A.L.: Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chem. Eng. J. 127, 111–119 (2007)

    Article  Google Scholar 

  82. Milonjić, S.K.: A consideration of the correct calculation of thermodynamic parameters of adsorption. J. Serbian Chem. Soc. 72, 1363–1367 (2007)

    Article  Google Scholar 

  83. Canzano, S.; Iovino, P.; Salvestrini, S.; Capasso, S.: Comment on “Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design”. Water Res. 46, 4314–4315 (2012)

    Article  Google Scholar 

  84. Myers, D.: Surfaces, interfaces, and colloids: principles and applications, 2nd edn. Wiley-VCH, New York (1999)

    Book  Google Scholar 

  85. Shermanhsu, C.P.: Infrared spectroscopy. Handbook of Instrumental Techniques for Analytical Chemistry. Prentice Hall, Frank Settle (1997)

    Google Scholar 

  86. Xiong, L.; Yang, Y.; Mai, J.X.; Sun, W.L.; Zhang, C.Y.; Wei, D.P.; Chen, Q.; Ni, J.R.: Adsorption behavior of methylene blue onto titanate nanotubes. Chem. Eng. J. 156, 313–320 (2010)

    Article  Google Scholar 

  87. Ai, L.H.; Zhang, C.Z.; Liao, F.; Wang, Y.; Li, M.; Meng, L.Y.; Jiang, J.: Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis. J. Hazard. Mater. 198, 282–290 (2011)

    Article  Google Scholar 

  88. Aygün, A.; Yenisoy-Karakaş, S.; Duman, I.: Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous Mesoporous Mater. 66, 189–195 (2003)

    Article  Google Scholar 

  89. Kavitha, D.; Namasivayam, C.: Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresour. Technol. 98, 14–21 (2007)

    Article  Google Scholar 

  90. Aboua, K.N.; Yobouet, Y.A.; Yao, K.B.; Goné, D.L.; Trokourey, A.: Investigation of dye adsorption onto activated carbon from the shells of Macoré fruit. J. Environ. Manag. 156, 10–14 (2015)

    Article  Google Scholar 

  91. Sharma, Y.C.; Uma, U.S.N.: Removal of a cationic dye from wastewaters by adsorption on activated carbon developed from coconut coir. Energy Fuels 23, 2983–2988 (2009)

    Article  Google Scholar 

  92. Alaya, M.N.; Hourieh, M.A.; Youssef, A.M.; El-Sejariah, F.: Adsorption properties of activated carbons prepared from olive stones by chemical and physical activation. Adsorp. Sci. Technol. 18, 27–42 (2000)

    Article  Google Scholar 

  93. Fu, K.; Yue, Q.; Gao, B.; Sun, Y.; Zhu, L.: Preparation, characterization and application of lignin-based activated carbon from black liquor lignin by steam activation. Chem. Eng. J. 228, 1074–1082 (2013)

    Article  Google Scholar 

  94. Angin, D.; Altintig, E.; Köse, T.E.: Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresour. Technol. 148, 542–549 (2013)

    Article  Google Scholar 

  95. Bestani, B.; Benderdouche, N.; Benstaali, B.; Belhakem, M.; Addou, Z.: Methylene blue and iodine adsorption onto an activated desert plant. Bioresour. Technol. 99, 8441–8444 (2008)

    Article  Google Scholar 

  96. Başar, C.A.: Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot. J. Hazard. Mater. 135, 232–241 (2006)

    Article  Google Scholar 

  97. Wenhong, L.; Qinyan, Y.; Peng, T.; Zuohao, M.; Baoyu, G.; Jinze, L.; Xing, X.: Adsorption characteristics of dyes in columns of activated carbon prepared from paper mill sewage sludge. Chem. Eng. J. 178, 197–203 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Directorate General for Scientific Research and Technological Development (DGRSDT) of Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdalah Bouguettoucha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bounaas, M., Bouguettoucha, A., Chebli, D. et al. Role of the Wild Carob as Biosorbent and as Precursor of a New High-Surface-Area Activated Carbon for the Adsorption of Methylene Blue. Arab J Sci Eng 46, 325–341 (2021). https://doi.org/10.1007/s13369-020-04739-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04739-5

Keywords

Navigation