Skip to main content
Log in

Comparative genomics of rice false smut fungi Ustilaginoidea virens Uv-Gvt strain from India reveals genetic diversity and phylogenetic divergence

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

False smut disease of rice caused by Ustilaginoidea virens, is an emerging threat to rice cultivation worldwide due to its detrimental effects on grain yield and quality. False smut disease severity was 4.44‒17.22% during a roving survey in Kharif 2016 in the four different rice ecosystems of Karnataka, India. Further, 15 pathogen isolates representing four different ecosystems were studied for their virulence and morphometric diversity. Among the 15 strains studied, most virulent strains Uv-Gvt was selected for whole genome sequencing in Illumina NextSeq 500 platform using 2 × 150 bp sequencing chemistry. The total assembled genome of Uv-Gvt was 26.96 Mb, which comprised of 9157 scaffolds with an N50 value of 15,934 bp and 6628 protein-coding genes. Next, the comparative genomic study revealed a similar gene inventory as UV-8b and MAFF 236576 strains reported from China and Japan, respectively. But, 1756 genes were unique to Uv-Gvt strain. The Uv-Gvt genome harbors 422 putative host–pathogen interacting genes compared to 359 and 520 genes in UV-8b and MAFF 236576 strains, respectively. The variant analysis revealed low genetic diversity (0.073‒0.088%) among U. virens strains. Further, phylogenetic analysis using 250 single copy orthologs genes of U. virens revealed a distinct phylogeny and an approximate divergence time. Our study, report the genomic resource of rice false smut pathogen from India, where the disease originated, and this information will have broader applicability in understanding the pathogen population diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The Whole-Genome Shotgun project for U. virens strain Uv-Gvt was deposited in DDBJ/EMBL/GenBank under the accession number PGGP00000000 (Bio Project Id: PRJNA414696 and Bio-Sample ID: SAMN07807409). The version described in this paper is version PGGP00000000.2.

References

  • Anonymous (2016) Production oriented survey. ICAR-Indian Institute of Rice Research, Hyderabad

    Google Scholar 

  • Ashizawa T, Takahashi M, Moriwaki J, Hirayae K (2011) A refined inoculation method to evaluate false smut resistance in rice. J Gen Plant Pathol 77(1):10–16

    Google Scholar 

  • Atia MMM (2004) Rice false smut (Ustilaginoidea virens) in Egypt. J Plant Dis Prot 111(1):71–82

    Google Scholar 

  • Baite MS, Sharma RK, Devi TP, Sharma P, Kamil D (2014) Morphological and molecular characterization of Ustilaginoidea virens isolates causing false smut of rice in India. Indian Phytopathol 67(3):222–227

    Google Scholar 

  • Bell MA, Lloyd GT (2015) strap: an R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence. Palaeontology 58:379–389

    Google Scholar 

  • Boutin C, Coineau N (2000) Evolutionary rates and phylogenetic age of some stygobiontic species. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems—ecosystems of the world 30. Elsevier, Amsterdam, pp 433–451

    Google Scholar 

  • Boyd LA, Ridout C, O'Sullivan DM, Leach JE, Leung H (2013) Plant–pathogen interactions: disease resistance in modern agriculture. Trends Genet 29(4):233–240

    CAS  PubMed  Google Scholar 

  • BromhamL PD (2003) The modern molecular clock. Nat Rev Genet 4:216–224. https://doi.org/10.1038/nrg1020

    Article  CAS  Google Scholar 

  • Buchfink B, Xie C, Huson DH (2014) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12(1):59

    PubMed  Google Scholar 

  • Chao J, Jin J, Wang D, Han R, Zhu R, Zhu Y, Li S (2014) Cytological and transcriptional dynamics analysis of host plant revealed stage-specific biological processes related to compatible rice-Ustilaginoidea virens interaction. PLoS ONE 9(3):0091391

    Google Scholar 

  • Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Ruden DM, Lu X (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6(2):80–92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke MC (1878) Some extra–European fungi. Grevillea 7:13–15

    Google Scholar 

  • Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan H, Read ND (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434(7036):980–986

    CAS  PubMed  Google Scholar 

  • DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hart C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5):491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dodan DS, Singh R (1996) False smut of rice: present status. Agric Res 17(4):227–240

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791

    PubMed  Google Scholar 

  • Galagan JE, Henn MR, Ma LJ, Cuomo CA, Birren B (2005) Genomics of the fungal kingdom: insights into eukaryotic biology. Genome Res 15(12):1620–1631

    CAS  PubMed  Google Scholar 

  • Gowda M, Shirkem MD, Mahesh HB, Chandaranam P, Rajamanim A, Chattoo BB (2015) Genome analysis of rice-blast fungus Magnaportheoryzae field isolates from southern India. Genomics Data 5:284–291

    PubMed  PubMed Central  Google Scholar 

  • Gupta R, Lee SE, Agrawal GK, Rakwal R, Park S, Wang Y, Kim ST (2015) Understanding the plant-pathogen interactions in the context of proteomics-generated apoplastic proteins inventory. Front Plant Sci 6:00352

    Google Scholar 

  • GurevichA SV, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29(8):1072–1075

    Google Scholar 

  • Han Y, Zhang K, Yang J, Zhang N, Fang A, Zhang Y, Liu Y, Chen Z, Hsiang T, Sun W (2015) Differential expression profiling of the early response to Ustilaginoidea virens between false smut resistant and susceptible rice varieties. BMC Genomics 16(1):955

    PubMed  PubMed Central  Google Scholar 

  • Hedges SB, Dudley J, Kumar S (2006) TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22(23):2971–2972

    CAS  PubMed  Google Scholar 

  • Hegde YR, Anahosur KH (2000) Effect of false smut of rice on yield components and growth parameters. Indian Phytopathol 53(2):181–184

    Google Scholar 

  • Heng L, Bob H, Alec W, Tim F, Jue R, Nils H, Gabor M, Goncalo A, Richard D (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Google Scholar 

  • Hittalmani S, Mahesh HB, Mahadevaiah C, Prasannakumar MK (2016) De novo genome assembly and annotation of rice sheath rot fungus Sarocladium oryzae reveals genes involved in Helvolic acid and Cerulenin biosynthesis pathways. BMC Genomics 17(1):271

    PubMed  PubMed Central  Google Scholar 

  • Hubisz MJ, Pollard KS, Siepel A (2010) PHAST and RPHAST: phylogenetic analysis with space/time models. Brief Bioinform 12(1):41–51

    PubMed  PubMed Central  Google Scholar 

  • Ikegami H (1962) Studies on the false smut of rice: seedling inoculation with the chlamydospores of the false smut fungus. Ann Phytopathol Soc Jpn 1:27

    Google Scholar 

  • Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA, Jahesh G, Khan H, Coombe L, Warren RL, Birol I (2017) ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res 27(5):768–777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang C, Zhang X, Liu H, Xu JR (2018) Mitogen-activated protein kinase signaling in plant pathogenic fungi. PLoS Pathog 14(3):1006875

    Google Scholar 

  • Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423(6937):241–254

    CAS  PubMed  Google Scholar 

  • Kumagai T, Ishii T, Terai G, Umemura M, Machida M, Asai K (2016) Genome sequence of Ustilaginoidea virens IPU010, a rice pathogenic fungus causing false smut. Genome Announc 4(3):00306–316

    Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing plat forms. Mol Biol Evol 35(6):1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ladhalakshmi D, Laha GS, Singh R, Karthikeyan A, Mangrauthia SK, Sundaram RM, Thukkaiyannan P, Viraktamath BC (2012) Isolation and characterization of Ustilaginoidea virens and survey of false smut disease of rice in India. Phytoparasitica 40(2):171–176

    CAS  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee N, D'Souza CA, Kronstad JW (2003) Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi. Annu Rev Phytopathol 41(1):399–427

    CAS  PubMed  Google Scholar 

  • Li Y, Koiso Y, Kobayashi H, Hashimoto Y, Iwasaki S (1995) Ustiloxins, new antimitotic cyclic peptides: interaction with porcine brain tubulin. Biochem Pharmacol 49(10):1367–1372

    CAS  PubMed  Google Scholar 

  • Li L, Stoeckert CJ, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13(9):2178–2189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenz MC, PanX HT, Cardenas ME, Xue Y, Hirsch JP, Heitman J (2000) The G protein-coupled receptor Gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Genetics 154(2):609–622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu DH, Yang XQ, Mao JH, Ye HL, Wang P, Chen YP, He ZQ, Chen F (2009) Characterising the pathogenicity diversity of Ustilaginoidea virens in hybrid rice in china. J Plant Pathol 91(2):443–451

    Google Scholar 

  • Mandhare VK, Gawade SB, Game BC, Padule DN (2008) Prevalence and incidence of bunt and false smut in paddy (Oryza sativa L.) seeds in Maharashtra. Agric Sci Digest 28(4):292–294

    Google Scholar 

  • Muniraju KM, Pramesh D, Mallesh SB, Mallikarjun K, Guruprasad GS (2017a) Disease severity and yield losses caused by false smut disease of rice in different rice ecosystems of Karnataka. Int J Microbiol Res 9(10):955–958

    Google Scholar 

  • Muniraju KM, Pramesh D, Mallesh SB, Mallikarjun K, Guruprasad GS (2017b) Novel fungicides for the management of false smut disease of rice caused by Ustilaginoidea virens. Int J Curr Microbiol Appl Sci 6(11):2664–2669

    Google Scholar 

  • Nadarajah K, Razali NM, Cheah BH, Sahruna NS, Ismail I, Tathode M, Bankar K (2017) Draft genome sequence of Rhizoctonia solani anastomosis group 1 subgroup 1A strain 1802/KB isolated from rice. Genome Announc 5(43):01188–1217

    Google Scholar 

  • Nowrousian M, Stajich JE, Chu M, Engh I, Espagne E, Halliday K, Kamerewerd J, Kempken F, Knab B, Kuo HC, Osiewacz HD (2010) De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora, a model organism for fungal morphogenesis. PLoS Genet 6(4):1000891

    Google Scholar 

  • Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A, Lapidus A, Prjibelsky A, Pyshkin A, Sirotkin A, Sirotkin Y, Stepanauskas R (2013) Assembling genomes and mini-metagenomes from highly chimeric reads. In: Annual international conference on research in computational molecular biology. Springer, Berlin, pp 158–170

  • Peng Y, Leung HC, Yiu SM, Chin FY (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28(11):1420–1428

    CAS  PubMed  Google Scholar 

  • Rogers SO, Bendich AJ (1994) Extraction of DNA from plant, fungal and algal tissues. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual, vol 1. Kluwer Academic Publishers, Boston, MA, pp 1–8

    Google Scholar 

  • Rush MC, Shahjahan AKM, Jones JP (2000) Outbreak of false smut of rice in Louisiana. Plant Dis 84(1):100

    CAS  PubMed  Google Scholar 

  • Sharma ND, Joshi LK (1975) False smut disease of rice. Curr Sci 44(10):352–354

    Google Scholar 

  • Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19):3210–3212

    CAS  PubMed  Google Scholar 

  • Singh AK, Pophaly DJ (2010) An unusual rice false smut epidemic reported in Raigarh District, Chhattisgarh, India. Int Rice Res Notes 35:1–3

    Google Scholar 

  • Smit AFA, Hubley R, Green P (2008–2015) Repeat Modeler Open 1.0

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical classification. WF Freeman & Co., San Francisco, 573p

    Google Scholar 

  • Sun X, Kang S, Zhang Y, Tan X, Yu Y, He H, Zhang X, Liu Y, Wang S, Sun W, Cai L (2013) Genetic diversity and population structure of rice pathogen Ustilaginoidea virens in China. PLoS ONE 8(9):e76879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suyama M, Torrents D, Bork P (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34(2):609–612

    Google Scholar 

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56(4):564–577

    CAS  PubMed  Google Scholar 

  • Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky M (2008) Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res 18(12):1979–1990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukui T, Nagano N, Umemura M, Kumagai T, Terai G, Machida M, Asai K (2014) Ustiloxins, fungal cyclic peptides, are ribosomally synthesized in Ustilaginoidea virens. Bioinformatics 31(7):981–985

    PubMed  Google Scholar 

  • Verma RK, Singh RA (1988) Variations in Claviceps oryzae-sativae the incitant of false smut of rice. Indian Phytopathol 41(1):48–50

    Google Scholar 

  • Wallace IM, O’sullivan O, Higgins DG, Notredame C (2006) M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Res 34(6):1692–1699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xue C, Hsueh YP, Heitman J (2008) Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiol Rev 32(6):1010–1032

    CAS  PubMed  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591

    CAS  PubMed  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang K, Fang A, Han Y, Yang J, Xue M, Bao J, Hu D, Zhou B, Sun X, Li S (2014) Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics. Nat Commun 5:s3849

    Google Scholar 

  • Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA (2013) The MaSuRCA genome assembler. Bioinformatics 29(21):2669–2677

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was funded by the Early Career Research (ECR) Grant (Project Number: ECR/2017/000246) of Science and Engineering Research Board (SERB), Government of India to Pramesh D. We are thankful to Dr. Raju Soolanayakanahally, Saskatoon Research Center, Agriculture and Agri-food Canada, Canada and Dr. C. T. Manjunath Prasad, Wageningen Campus, Wageningen University and Research, The Netherlands for critically reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

DP and MKP conceived the project, arranged the funds, designed the experiments and wrote the manuscript. KMM, AS, EC, MKK and HS conducted the survey, collected isolates, cultured and performed morphometric study. HBM, PHD, CM, MKY, BSR, GB and AJD submitted the raw data, carried out assembly, annotation, pathway analysis, phylogenetic study, SNP profiling, prepared tables and figures and wrote the manuscript. All authors read and approved the final manuscript for publication.

Corresponding author

Correspondence to Devanna Pramesh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13205_2020_2336_MOESM1_ESM.jpg

Supplementary file1 Online Resource 1: Different stages of development of false smut disease of rice. a) development of pathogen mycelium inside the grain b) emergence of the mycelium with silvery membrane c) rupturing of silvery membrane d) development of pale yellow chlamydospores inside the membrane e) colour change from yellow to orange e) colour change from orange to olive green and finally to black (JPG 144 kb)

Supplementary file2 (DOCX 17 kb)

Supplementary file3 (DOCX 13 kb)

Supplementary file4 (DOCX 14 kb)

Supplementary file5 Online Resource 5: List of predicted genes in Uv-Gvt genome (XLSX 16 kb)

Supplementary file6 (XLSX 514 kb)

Supplementary file7 (XLSX 148 kb)

Supplementary file8 (XLSX 11 kb)

Supplementary file9 (XLSX 22 kb)

Supplementary file10 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramesh, D., Prasannakumar, M.K., Muniraju, K.M. et al. Comparative genomics of rice false smut fungi Ustilaginoidea virens Uv-Gvt strain from India reveals genetic diversity and phylogenetic divergence. 3 Biotech 10, 342 (2020). https://doi.org/10.1007/s13205-020-02336-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02336-9

Keywords

Navigation