Skip to main content
Log in

Virial Identities and Energy–Momentum Relation for Solitary Waves of Nonlinear Dirac Equations

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Solitary waves of nonlinear Dirac, Maxwell–Dirac and Klein–Gordon–Dirac equations are considered. We deduce some virial identities and check that the energy-momentum relation for solitary waves coincides with the Einstein energy-momentum relation for point particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Abenda, ‘‘Solitary waves for Maxwell–Dirac and Coulomb–Dirac models,’’ Ann. Inst. H. Poincaré Phys. Théor. 68, 229–244 (1998).

    MathSciNet  MATH  Google Scholar 

  2. M. Balabane, T. Cazenave, A. Douady, and F. Merle, ‘‘Existence of excited states for a nonlinear Dirac field,’’ Commun. Math. Phys. 119, 153–176 (1988).

    Article  MathSciNet  Google Scholar 

  3. M. Balabane, T. Cazenave, and L. Vazquez, ‘‘Existence of standing waves for Dirac fields with singular nonlinearities,’’ Commun. Math. Phys. 133, 53–74 (1990).

    Article  MathSciNet  Google Scholar 

  4. H. A. Bethe, Intermediate Quantum Mechanics (W. A. Benjamin, New York, Amsterdam, 1964).

    Google Scholar 

  5. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964).

    MATH  Google Scholar 

  6. T. Cazenave and L. Vazquez, ‘‘Existence of localized solutions for a classical nonlinear Dirac field,’’ Comm. Math. Phys. 105, 35–47 (1986).

    Article  MathSciNet  Google Scholar 

  7. J. Chadam, ‘‘Global solutions of the Cauchy problem for the (classical) coupled Maxwell–Dirac system in one space dimension,’’ J. Funct. Anal. 13, 173–184 (1973).

    Article  Google Scholar 

  8. J. Chadam and R. Glassey, ‘‘On certain global solutions of the Cauchy problem for the (classical) coupled Klein–Gordon–Dirac equations in one and three space dimensions,’’ Arch. Rational Mech. Anal. 54, 223–237 (1974).

    Article  MathSciNet  Google Scholar 

  9. J. Chadam and R. Glassey, ‘‘On the Maxwell–Dirac equations with zero magnetic field and their solutions in two space dimension,’’ J. Math. Anal. Appl. 53, 495–507 (1976).

    Article  MathSciNet  Google Scholar 

  10. G. H. Derrick, ‘‘Comments on nonlinear wave equations as models for elementary particles,’’ J. Math. Phys. 5, 1252–1254 (1964).

    Article  MathSciNet  Google Scholar 

  11. T. V. Dudnikova, A. I. Komech, and H. Spohn, ‘‘Energy-momentum relation for solitary waves of relativistic wave equation,’’ Russ. J. Math. Phys. 9, 153–160 (2002).

    MathSciNet  MATH  Google Scholar 

  12. F. Dyson, Advanced Quantum Mechanics (World Scientific, Singapore, 2007).

    Book  Google Scholar 

  13. A. Einstein and G. Grommer, ‘‘Allgemeine Relativitätstheorie und Bewegungsgesetz,’’ Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl., 2–13 (1927).

    MATH  Google Scholar 

  14. A. Einstein, L. Infeld, and B. Hoffmann, ‘‘The gravitational equations and the problem of motion,’’ Ann. Math. 39, 65–100 (1938).

    Article  MathSciNet  Google Scholar 

  15. M. Esteban, V. Georgiev, and E. Séré, ‘‘Stationary solutions of the Maxwell–Dirac and the Klein–Gordon–Dirac equations,’’ Calc. Var. Partial Differ. Equat. 4, 265–281 (1996).

    Article  MathSciNet  Google Scholar 

  16. M. J. Esteban, M. Lewin, and E. Séré, ‘‘Variational methods in relativistic quantum mechanics,’’ Bull. (New Ser.) AMS 45, 535–593 (2008).

    Article  MathSciNet  Google Scholar 

  17. M. Esteban and E. Séré, ‘‘Stationary states of the nonlinear Dirac equation: A variational approach,’’ Commun. Math. Phys. 171, 323–350 (1995).

    Article  MathSciNet  Google Scholar 

  18. M. Esteban and E. Séré, ‘‘An overview on linear and nonlinear Dirac equation,’’ Discrete Contin. Dynam. Syst. 8, 381–397 (2002).

    Article  MathSciNet  Google Scholar 

  19. L. Gross, ‘‘The Cauchy problem for the coupled Maxwell and Dirac equations,’’ Comm. Pure Appl. Math. 19, 1–5 (1966).

    Article  MathSciNet  Google Scholar 

  20. D. J. Gross and A. Neveu, ‘‘Dynamical symmetry breaking in asymptotically free field theories,’’ Phys. Rev. D 10, 3235–3253 (1974).

    Article  Google Scholar 

  21. S. Y. Lee, T. K. Kuo, and A. Gavrielides, ‘‘Exact localized solutions of two-dimensional fields theories of massive fermions with Fermi interactions,’’ Phys. Rev. D 12, 2249–2253 (1975).

    Article  Google Scholar 

  22. A. G. Lisi, ‘‘A solitary wave solution of the Maxwell–Dirac equations,’’ J. Phys. A 28, 5385–5392 (1995).

    Article  MathSciNet  Google Scholar 

  23. F. Merle, ‘‘Existence of stationary states for nonlinear Dirac equations,’’ J. Differ. Equat. 74, 50–68 (1988).

    Article  MathSciNet  Google Scholar 

  24. H. Ounaies, ‘‘Perturbation method for a class of nonlinear Dirac equations,’’ Differ. Integr. Equat. 13, 707–720 (2000).

    MathSciNet  MATH  Google Scholar 

  25. S. I. Pohozaev, ‘‘On the eigenfunctions of the equation \(\Delta u+\lambda f(u)=0\),’’ Sov. Math. Dokl. 6, 1408–1411 (1965).

    MATH  Google Scholar 

  26. A. F. Ranada, ‘‘Classical nonlinear Dirac field models of extended particles,’’ in Quantum Theory, Groups, Fields and Particles, Ed. by A. O. Barut (Reidel, Dordrecht, 1983), pp. 271–291.

    Google Scholar 

  27. A. F. Ranada and L. Vazquez, ‘‘Classical system of nonlinear Dirac and Klein–Gordon fields,’’ Prog. Theor. Phys. 56, 311–323 (1976).

    Article  Google Scholar 

  28. N. Rosen, ‘‘A field theory of elementary particles,’’ Phys. Rev. 55, 94–101 (1939).

    Article  Google Scholar 

  29. G. Rosen, ‘‘Particlelike solutions to nonlinear complex scalar field theories with positive-definite energy densities,’’ J. Math. Phys. 9, 996–998 (1968).

    Article  Google Scholar 

  30. G. Rosen, ‘‘Charged particle-like solutions to nonlinear complex scalar field theories with positive-definite energy densities,’’ J. Math. Phys. 9, 999–1002 (1968).

    Article  Google Scholar 

  31. S. S. Schweber, An Introduction to Relativistic Quantum Field Theory (Row, Peterson and Co., Evanston, IL, 1961).

    MATH  Google Scholar 

  32. L. I. Schiff, Quantum Mechanics, 3rd ed. (McGraw-Hill, New York, 1968).

    Google Scholar 

  33. M. Soler, ‘‘Classical, stable, nonlinear spinor fields with positive rest energy,’’ Phys. Rev. D1, 2766–2769 (1970).

    Google Scholar 

  34. B. Thaller, The Dirac Equation, Texts and Monographs in Physics, Ed. by W. Beiglböck, E. H. Lieb, and W. Thirring (Springer, Berlin, Heidelberg, New York, 1992).

    Google Scholar 

  35. M. Wakano, ‘‘Intensely localized solutions of the classical Dirac–Maxwell field equations,’’ Progr. Theor. Phys. 35, 1117–1141 (1966).

    Article  Google Scholar 

  36. H. Yukawa, ‘‘On the interaction of elementary particles. I,’’ Proc. Phys.-Math. Soc. Jpn. 17, 48–57 (1935).

    MATH  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 19-71-30004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Dudnikova.

Additional information

(Submitted by A. I. Aptekarev)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudnikova, T.V. Virial Identities and Energy–Momentum Relation for Solitary Waves of Nonlinear Dirac Equations. Lobachevskii J Math 41, 956–981 (2020). https://doi.org/10.1134/S1995080220060074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080220060074

Navigation