Skip to main content
Log in

Ganikhodjaev’s Conjecture on Mean Ergodicity of Quadratic Stochastic Operators

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

A linear stochastic (Markov) operator is a positive linear contraction which preserves the simplex. A quadratic stochastic (nonlinear Markov) operator is a positive symmetric bilinear operator that preserves the simplex. The ergodic theory studies the long term average behavior of systems evolving in time. The classical mean ergodic theorem asserts that the arithmetic average of the linear stochastic operator always converges to some linear stochastic operator. While studying the evolution of the population system, S. Ulam conjectured the mean ergodicity of quadratic stochastic operators. However, M. Zakharevich showed that Ulam’s conjecture is false in general. Later, N. Ganikhodjaev and D. Zanin have generalized Zakharevich’s example in the class of quadratic stochastic Volterra operators. Afterward, N. Ganikhodjaev made a conjecture that Ulam’s conjecture is true for properly quadratic stochastic non-Volterra operators. In this paper, we provide counterexamples to Ganikhodjaev’s conjecture on mean ergodicity of quadratic stochastic operators acting on the higher dimensional simplex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. M. Badocha and W. Bartoszek, ‘‘Quadratic stochastic operators on Banach lattices,’’ Positivity 22, 477–492 (2018).

    MathSciNet  MATH  Google Scholar 

  2. K. Baranski and M. Misiurewicz, ‘‘Omega-limit sets for the Stein-Ulam spiral map,’’ Top. Proc. 36, 145–172 (2010).

    MathSciNet  MATH  Google Scholar 

  3. K. Bartoszek, J. Domsta, and M. Pulka, ‘‘Weak stability of centred quadratic stochastic operators,’’ Bull. Malays. Math. Sci. Soc. 42, 1813–1830 (2019).

    MathSciNet  MATH  Google Scholar 

  4. K. Bartoszek and M. Pulka, ‘‘Asymptotic properties of quadratic stochastic operators acting on the \(L_{1}\) space,’’ Nonlin. Anal. Theor. Methods 114, 26–39 (2015).

    MATH  Google Scholar 

  5. K. Bartoszek and M. Pulka, ‘‘Prevalence problem in the set of quadratic stochastic operators acting on \(L_{1}\),’’ Bull. Malays. Math. Sci. Soc. 41, 159–173 (2018).

    MathSciNet  MATH  Google Scholar 

  6. W. Bartoszek and M. Pulka, ‘‘On mixing in the class of quadratic stochastic operators,’’ Nonlin. Anal. Theory Method Appl. 86, 95–113 (2013).

    MathSciNet  MATH  Google Scholar 

  7. T. Bier, Z. Dollah, and N. Ganikhodjaev, ‘‘Construction of non-ergodic quadratic stochastic operators,’’ Nonlinear Anal. Phenom. 2, 1–14 (2005).

    MathSciNet  Google Scholar 

  8. N. Ganihodzhaev, ‘‘On stochastic processes generated by quadratic operators,’’ J. Theor. Prob. 4, 639–653 (1991).

    MathSciNet  Google Scholar 

  9. N. Ganikhodjaev, R. Ganikhodjaev, and U. Jamilov, ‘‘Quadratic stochastic operators and zero-sum game dynamics,’’ Ergod. Theory Dynam. Syst. 35, 1443–1473 (2015).

    MathSciNet  MATH  Google Scholar 

  10. N. Ganikhodjaev, and D. Zanin, ‘‘On a necessary condition for the ergodicity of quadratic operators defined on the two-dimensional simplex,’’ Russ. Math. Surv. 59, 161–162 (2004).

    MathSciNet  Google Scholar 

  11. R. Ganikhodzhaev, ‘‘On the definition of quadratic doubly stochastic operators,’’ Russ. Math. Surv. 48, 244–246 (1992).

    Google Scholar 

  12. R. Ganikhodzhaev, ‘‘Quadratic stochastic operators, Lyapunov functions and tournaments,’’ Russ. Acad. Sci., Sb. Math. 76, 489–506 (1993).

    Google Scholar 

  13. R. Ganikhodzhaev, ‘‘A chart of fixed points and Lyapunov functions for a class of discrete dynamical systems,’’ Math. Notes 56, 1125–1131 (1994).

    MathSciNet  MATH  Google Scholar 

  14. R. Ganikhodzhaev, F. Mukhamedov, and U. Rozikov, ‘‘Quadratic stochastic operators and processes: Results and open problems,’’ Inf. Dim. Anal. Quan. Prob. Rel. Top. 14, 279–335 (2011).

    MathSciNet  MATH  Google Scholar 

  15. U. Jamilov and M. Ladra, ‘‘Non-ergodicity of uniform quadratic stochastic operators,’’ Qual. Theory Dyn. Syst. 15, 257–271 (2016).

    MathSciNet  MATH  Google Scholar 

  16. U. Jamilov, M. Ladra, and R. Mukhitdinov, ‘‘On the equiprobable strictly non-Volterra quadratic stochastic operators,’’ Qual. Theory Dyn. Syst. 16, 645–655 (2017).

    MathSciNet  MATH  Google Scholar 

  17. U. Jamilov and U. Rozikov, ‘‘The dynamics of strictly non-Volterra quadratic stochastic operators on the 2-simplex,’’ Mat. Sb. 200 (9), 81–94 (2009).

    MathSciNet  Google Scholar 

  18. H. Kesten,‘‘Quadratic transformations: A model for population growth I,’’ Adv. Appl. Prob. 2, 1–82 (1970).

    MathSciNet  MATH  Google Scholar 

  19. V. Kolokoltsov, Nonlinear Markov Processes and Kinetic Equations (Cambridge Univ. Press, Cambridge, 2010).

    MATH  Google Scholar 

  20. Y. Lyubich, Mathematical Structures in Population Genetics (Springer, Berlin, 1992).

    MATH  Google Scholar 

  21. M. T. Menzel, P. R. Stein, and S. M. Ulam, ‘‘Quadratic transformations. Part 1,’’ Los Alamos Scientific Laboratory Report LA-2305 (Los Alamos Sci. Lab., 1959).

  22. F. Mukhamedov and N. Ganikhodjaev, Quantum Quadratic Operators and Processes (Springer, Berlin, 2015).

    MATH  Google Scholar 

  23. M. Saburov, ‘‘A class of nonergodic Lotka–Volterra operators,’’ Math. Notes 97, 759–763 (2015).

    MathSciNet  MATH  Google Scholar 

  24. M. Saburov, ‘‘On divergence of any order Cesaro mean of Lotka–Volterra operators,’’ Ann. Fun. Anal. 6, 247–254 (2015).

    MathSciNet  MATH  Google Scholar 

  25. M. Saburov, ‘‘Ergodicity of nonlinear Markov operators on the finite dimensional space,’’ Non. Anal. Theory Met. Appl. 143, 105–119 (2016).

    MathSciNet  MATH  Google Scholar 

  26. M. Saburov, ‘‘On the surjectivity of quadratic stochastic operators acting on the simplex,’’ Math. Notes 99, 623–627 (2016).

    MathSciNet  MATH  Google Scholar 

  27. M. Saburov, ‘‘On regularity of diagonally positive quadratic doubly stochastic operators,’’ Results Math. 72, 1907–1918 (2017).

    MathSciNet  MATH  Google Scholar 

  28. M. Saburov, ‘‘On regularity of positive quadratic doubly stochastic operators,’’ Math. Notes 103, 328–333 (2018).

    MathSciNet  MATH  Google Scholar 

  29. M. Saburov, ‘‘Dichotomy of iterated means for nonlinear operators,’’ Funct. Anal. Appl. 52, 89–91 (2018).

    MathSciNet  MATH  Google Scholar 

  30. M. Saburov, ‘‘Ergodicity of \(\mathbf{p}\)-majorizing quadratic stochastic operators,’’ Markov Processes Relat. Fields 24, 131–150 (2018).

    MATH  Google Scholar 

  31. M. Saburov, ‘‘Ergodicity of \(\mathbf{p}\)-majorizing nonlinear Markov operators on the finite dimensional space,’’ Linear Algebra Appl. 578, 53–74 (2019).

    MathSciNet  MATH  Google Scholar 

  32. M. Saburov, ‘‘Some non-ergodic quadratic stochastic operators,’’ Uzb. Math. J. 1, 108–115 (2019).

    MathSciNet  Google Scholar 

  33. M. Saburov and Kh. Saburov, ‘‘Mathematical models of nonlinear uniform consensus,’’ Sci. Asia 40, 306–312 (2014).

    MATH  Google Scholar 

  34. M. Saburov and Kh. Saburov, ‘‘Reaching a nonlinear consensus: Polynomial stochastic operators,’’ Int. J. Cont. Autom. Syst. 12, 1276–1282 (2014).

    MATH  Google Scholar 

  35. M. Saburov and Kh. Saburov, ‘‘Reaching a nonlinear consensus: A discrete nonlinear time-varying case,’’ Int. J. Syst. Sci. 47, 2449–2457 (2016).

    MathSciNet  MATH  Google Scholar 

  36. M. Saburov and Kh. Saburov, ‘‘Reaching consensus via polynomial stochastic operators: A general study,’’ Springer Proc. Math. Stat. 212, 219–230 (2017).

    MathSciNet  MATH  Google Scholar 

  37. M. Saburov and Kh. Saburov, ‘‘Mathematical models of nonlinear uniformly consensus II,’’ J. Appl. Nonlin. Dyn. 7, 95–104 (2018).

    MathSciNet  MATH  Google Scholar 

  38. M. Saburov and N. Yusof, ‘‘Counterexamples to the conjecture on stationary probability vectors of the second-order Markov chains,’’ Linear Algebra Appl. 507, 153–157 (2016).

    MathSciNet  MATH  Google Scholar 

  39. M. Saburov and N. Yusof, ‘‘The structure of the fixed point set of quadratic operators on the simplex,’’ Fixed Point Theory 19, 383–396 (2018).

    MathSciNet  MATH  Google Scholar 

  40. M. Saburov and N. Yusof, ‘‘On uniqueness of fixed points of quadratic stochastic operators on a 2D simplex,’’ Methods Funct. Anal. Topol. 24, 255–264 (2018).

    MathSciNet  MATH  Google Scholar 

  41. T. Sarymsakov and N. Ganikhodjaev, ‘‘Analytic methods in the theory of quadratic stochastic processes,’’ J. Theor. Prob. 3, 51–70 (1990).

    Google Scholar 

  42. S. Ulam, A Collection of Mathematical Problems (New York, London, 1960).

    MATH  Google Scholar 

  43. S. Vallander, ‘‘The limiting behavior of the sequences of iterates of certain quadratic transformations,’’ Sov. Math. Dokl. 13, 123–126 (1972).

    MATH  Google Scholar 

  44. M. Zakharevich, ‘‘On the behavior of trajectories and the ergodic hypothesis for quadratic mappings of a simplex,’’ Russ. Math. Surv. 33, 265–266 (1978).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Saburov or Kh. Saburov.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saburov, M., Saburov, K. Ganikhodjaev’s Conjecture on Mean Ergodicity of Quadratic Stochastic Operators. Lobachevskii J Math 41, 1014–1020 (2020). https://doi.org/10.1134/S1995080220060165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080220060165

Navigation