Skip to main content
Log in

Influence of Nitrogen on the Microstructure, Hardness, and Tribological Properties of Cr–Ni–B–C–N Films Deposited by DC Magnetron Sputtering

  • SYNTHESIS, STRUCTURE, AND PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

Using the direct current reaction magnetron sputtering technique, Cr–Ni–B–C–N films are deposited onto silicon substrates by sputtering Cr–Ni and B–C targets in an Ar/N2 gas mixture. The microstructure, chemical bonds, hardness, and tribological properties of the films are characterized using the X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) methods, and microindentation and tribological tests. The experimental results show that the microstructure and properties of the films change upon incorporation of nitrogen into the film composition. The Cr–Ni–B–C–N films are mainly composed of the nanocrystalline CrN phase with some fractions of the Ni, Cr2O3, and B2O3 crystalline phases embedded in a mixed amorphous environment. Addition of nitrogen gives rise to an increase in the film hardness to a maximum value of about 17 GPa at FN2 = 40 cm3/min, and then the hardness sharply decrease with a further increase in the FN2 flow rate. The incorporation of nitrogen into the structure of films improves their tribological and adhesion properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Cai, F., Huang, X., Yang, Q., Wei, R., and Nagy, D., Microstructure and tribological properties of CrN and CrSiCN coatings, Surf. Coat. Technol., 2010, vol. 205, pp. 182–188.

    Article  CAS  Google Scholar 

  2. Shah, H.N., Jayaganthan, R., and Pandey, A.C., Nanoindentation study of magnetron-sputtered CrN and CrSiN coatings, Mater. Des., 2011, vol. 32, pp. 2628–2634.

    Article  CAS  Google Scholar 

  3. Kong, Q., Ji, L., Li, H., Liu, X., Wang, Y., Chen, J., and Zhou, H., Composition, microstructure, and properties of CrNx films deposited using medium frequency magnetron sputtering, Appl. Surf. Sci., 2011, vol. 57, pp. 2269–2274.

    Article  Google Scholar 

  4. Wu, F.-B., Li, J.-J., and Duh, J.-G., Evaluation of the mechanical properties and tribological behavior of the CrN coating deposited on mild steel modified with electroless Ni interlayer, Thin Solid Films, 2000, vols. 377–378, pp. 354–359.

    Article  Google Scholar 

  5. Cheng, C.-H., Lee, J.-W., Ho, L.-W., Chen, H.-W., Chan, Y.-C., and Duh, J.-G., Microstructure and mechanical property evaluation of pulsed DC magnetron sputtered Cr–B and Cr–B–N films, Surf. Coat. Technol., 2011, vol. 206, pp. 1711–1719.

    Article  CAS  Google Scholar 

  6. Nedfors, N., Primetzhofer, D., Wang, L., Lu, J., Hultman, L., and Jansson, U., Characterization of magnetron sputtered Cr–B and Cr–B–C thin films for electrical contact applications, Surf. Coat. Technol., 2015, vol. 266, pp. 167–176.

    Article  CAS  Google Scholar 

  7. Andersson, M., Högström, J., Urbonaite, S., Furlan, A., Nyholm, L., and Jansson, U., Deposition and characterization of magnetron sputtered amorphous Cr–C films, Vacuum, 2012, vol. 86, pp. 1408–1416.

    Article  CAS  Google Scholar 

  8. Nygren, K., Andersson, M., Högström, J., Fredriksson, W., Edström, K., Nyholm, L., and Jansson, U., Influence of deposition temperature and amorphous carbon on microstructure and oxidation resistance of magnetron sputtered nanocomposite Cr–C films, Appl. Surf. Sci., 2014, vol. 305, pp. 143–153.

    Article  CAS  Google Scholar 

  9. Zhang G., Wang L., Yan P., and Xue Q., Structure and mechanical properties of Cr–B–N films deposited by reactive magnetron sputtering, J. Alloys Compd., 2009, vol. 486, pp. 227–232.

    Article  CAS  Google Scholar 

  10. Wu, Z.L., Lin, J., Moore, J.J., and Lei, M.K., Microstructure, mechanical and tribological properties of Cr–C–N coatings deposited by pulsed closed field unbalanced magnetron sputtering, Surf. Coat. Technol., 2009, vol. 204, pp. 931–935.

    Article  CAS  Google Scholar 

  11. Yang, Y.-S., Cho, T.-P., and Ye, H.-W., The effect of deposition parameters on the mechanical properties of Cr–C–N coatings, Surf. Coat. Technol., 2014, vol. 259, pp. 141–145.

    Article  CAS  Google Scholar 

  12. Barshilia, H.C., Selvakumar, N., Deepthi, B., and Rajam, K.S., A comparative study of reactive direct current magnetron sputtered CrAlN and CrN coatings, Surf. Coat. Technol., 2006, vol. 201, pp. 2193–2201.

    Article  CAS  Google Scholar 

  13. Li, Z., Munroe, P., Jiang, Z., Zhao, X., Xu, J., Zhou, Z., Jiang, J., Fang, F., and Xie, Z., Designing superhard, self-toughening CrAlN coatings through grain boundary engineering, Acta Mater., 2012, vol. 60, pp. 5735–5744.

    Article  CAS  Google Scholar 

  14. Tan, S., Zhang, X., Zhang, Y., Zhen, R., Zhu, X., Tian, Z., and Wang, Z., Microstructure and properties of Cr–Cu–N coatings with ultra-low copper content, Surf. Coat. Technol., 2015, vol. 275, pp. 270–275.

    Article  CAS  Google Scholar 

  15. Kuo, Y.-C., Lee, J.-W., Wang, C.-J., and Chang, Y.-J., The effect of Cu content on the microstructures, mechanical and antibacterial properties of Cr–Cu–N nanocomposite coatings deposited by pulsed DC reactive magnetron sputtering, Surf. Coat. Technol., 2007, vol. 202, pp. 854–860.

    Article  CAS  Google Scholar 

  16. Kim, G.S., Kim, B.S., Lee, S.Y., and Hahn, J.H., Structure and mechanical properties of Cr–Zr–N films synthesized by closed field unbalanced magnetron sputtering with vertical magnetron sources, Surf. Coat. Technol., 2005, vol. 200, pp. 1669–1675.

    Article  CAS  Google Scholar 

  17. Khamesh, S. and Araghi, H., A study of the oxidation behavior of CrN and CrZrN ceramic thin films prepared in a magnetron sputtering system, Ceram. Int., 2016, vol. 42, pp. 9988–9994.

    Article  Google Scholar 

  18. Regent, F. and Musil, J., Magnetron sputtered Cr–Ni–N and Ti–Mo–N films: Comparison of mechanical properties, Surf. Coat. Technol., 2001, vol. 142–144, pp. 146–151.

    Article  Google Scholar 

  19. Cheng, W.L., Zhou, Z.F., Shum, P.W., and Li, K.Y., Effect of Ni addition on the structure and properties of Cr–Ni–N coatings deposited by closed-field unbalanced magnetron sputtering ion plating, Surf. Coat. Technol., 2013, vol. 229, pp. 84–89.

    Article  CAS  Google Scholar 

  20. Kim, D.H., Zhang, T.F., Shin, J.H., Kang, M.C., and Kim, K.H., Microstructure and mechanical properties of Cr–Ni–N coatings deposited by HiPIMS, Surf. Eng., 2016, vol. 32, pp. 314–320.

    Article  CAS  Google Scholar 

  21. Wo, P.C., Munroe, P.R., Jiang, Z.T., Zhou, Z., Li, K.Y., and Xie, Z., Enhancing toughness of CrN coatings by Ni addition for safety-critical applications, Mater. Sci. Eng., A, 2014, vol. 596, pp. 264–274.

    Article  CAS  Google Scholar 

  22. Zhang, Z.G., Rapaud, O., Allain, N., Mercs, D., Brien, V., Dong, C., and Coddet, C., Influence of Ni content on the structure and properties of Cr–Ni–N coatings prepared by direct current magnetron sputtering, Thin Solid Films, 2009, vol. 517, pp. 3304–3309.

    Article  CAS  Google Scholar 

  23. X-Ray Power Diffraction Files.

  24. Ma, Q., Zhou, F., Gao, S., Wu, Z., Wang, Q., Chen, K., Zhou, Z., and Li, L.K.-Y., Influence of boron content on the microstructure and tribological properties of Cr–B–N coatings in water lubrication, Appl. Surf. Sci., 2016, vol. 377, pp. 394–405.

    Article  CAS  Google Scholar 

  25. Lin, J., Moore, J.J., Moerbe, W.C., Pinkas, M., Mishra, B., Doll, G.L., and Sproul, W.D., Structure and properties of selected (Cr–Al–N, TiC–C, Cr–B–N) nanostructured tribological coatings, Int. J. Refract. Met. Hard Mater., 2010, vol. 28, pp. 2–14.

    Article  CAS  Google Scholar 

  26. NIST XPS Database.

  27. Li, B., Lin, A., and Gan, F., Preparation and characterization of Cr–P coatings by electrodeposition from trivalent chromium electrolytes using malonic acid as complex, Surf. Coat. Technol., 2006, vol. 201, pp. 2578–2586.

    Article  CAS  Google Scholar 

  28. Lu, F.-H., Chen, H.-Y., and Hung, Ch.-H., Degradation of CrN films at high temperature under controlled atmosphere, J. Vac. Sci. Technol., A, 2003, vol. 21, pp. 671–675.

    Article  CAS  Google Scholar 

  29. Wang, L.-J., Yu, J.-P., Chou, K.-Ch., and Seetharaman, S., Effects of MgO and Al2O3 addition on redox state of chromium in CaO–SiO2–CrOx slag system by XPS method, Metall. Mater. Trans. B, 2015, vol. 46, pp. 1802–1808.

    Article  CAS  Google Scholar 

  30. Qian, X.-B., Peng, W., Shao, Y.-B., and Huang, J.-H., Nickel oxide/Au porous nanobelts: Synthesis and visible light-driven photocatalytic hydrogen production, Int. J. Hydrogen Energy, 2018, vol. 43, pp. 2160–2170.

    Article  CAS  Google Scholar 

  31. Jiang, Y., Huang, T., Xu, Y., Li, X., Qin, Z., and Ji, H., Anti-coke properties of acid-treated bentonite-supported nickel-boron catalyst, Chem. Eng. Technol., 2018, vol. 41, pp. 175–181.

    Article  CAS  Google Scholar 

  32. Yliniemi, K., Nguyen, N. T., Mohajernia, Sh., Liu, N., Wilson, B.P., Schmuki, P., and Lundström, M., A direct synthesis of platinum/nickel co-catalysts on titanium dioxide nanotube surface from hydrometallurgical-type process streams, J. Clean. Prod., 2018, vol. 201, pp. 39–48.

    Article  CAS  Google Scholar 

  33. Susi, T., Pichler, T., and Ayala, P., X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms, Beilstein J. Nanotechnol., 2015, vol. 6, pp. 177–192.

    Article  Google Scholar 

  34. Prakash, A. and Sundaram, K., Optical and XPS studies of BCN thin films by co-sputtering of B4C and BN targets, Appl. Surf. Sci., 2017, vol. 396, pp. 484–491.

    Article  CAS  Google Scholar 

  35. Zhang, H., Liu, L., Bai, J., and Liu, X., Corrosion behaviour and microstructure of electrodeposited nano-layered Ni–Cr coatings, Thin Solid Films, 2015, vol. 595, pp. 36–40.

    Article  CAS  Google Scholar 

  36. Hirte, T., Feuerfeil, R., Perez-Solorzano, V., Wagner, T.A., and Scherge, M., Influence of composition on the wear properties of boron carbonitride (BCN) coatings deposited by high power impulse magnetron sputtering, Surf. Coat. Technol., 2015, vol. 284, pp. 94–100.

    Article  CAS  Google Scholar 

  37. Bui, Q.T.P., Kim, Y., Yoon, S.P., Han, J., Ham, H.C., Nam, S.W., and Yoon, C.W., Steam reforming of simulated biogas over plate Ni–Cr catalysts: Influence of pre-oxidation on catalytic activity, Appl. Catal., B, 2015, vols. 166–167, pp. 335–344.

    Article  Google Scholar 

  38. Sakamaoto, Y., Nose, M., Mae, T., Honbo, E., Zhou, M., and Nogi, K., Structure and properties of Cr–B, Cr–B–N and multilayer Cr–B/Cr–B–N thin films prepared by r.f.-sputtering, Surf. Coat. Technol., 2003, vols. 174–175, pp. 444–449.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Onoprienko.

Additional information

Translated by O. Kadkin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onoprienko, A.A., Ivashchenko, V.I., Scrynskyy, P.L. et al. Influence of Nitrogen on the Microstructure, Hardness, and Tribological Properties of Cr–Ni–B–C–N Films Deposited by DC Magnetron Sputtering. J. Superhard Mater. 42, 68–77 (2020). https://doi.org/10.3103/S1063457620020069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457620020069

Keywords:

Navigation