Skip to main content
Log in

Effect of Substituents on the Energy Barrier of Internal Rotation in Aminonitroethylenes

  • Organic Synthesis and Industrial Organic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Promising energetic materials 1,1-diamino-2,2-dinitroethylene (DADNE) and its derivatives in which one or both hydrogen atoms of the amino group are substituted by the NH2 or OH group were studied by quantum-chemical methods using PBE0 hybrid functional with the cc-pVDZ basis set and the coupled cluster method on the CCSD/aug-cc-pVDZ level. The thermal stability of such substances depends on the energy barrier of internal rotation Er around the C=C bond. The above-indicated substituents decrease Er . The value of Er is mainly determined by the structure of intramolecular hydrogen bonds. Introduction of the amino group leads to a more pronounced decrease in Er than introduction of the hydroxy group does.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Latypov, N.V., Bergman, J., Langlet, A., Wellmar, U., and Bemm, U., Tetrahedron, 1998, vol. 54, no. 38, pp. 11525–11536. https://doi.org/10.1016/S0040-4020(98)00673-5

    Article  CAS  Google Scholar 

  2. Bellamy, A.J., Structure and Bonding, Mingos, D.M.P., Ed., Berlin: Springer, 2007, vol. 125, pp. 1–33. https://doi.org/10.1007/430_2006_054

    Google Scholar 

  3. Sikder, A.K. and Sikder, N., J. Hazard. Mater., 2004, vol. 112, nos. 1–2, pp. 1–15. https://doi.org/10.1016/j.jhazmat.2004.04.003

    Article  CAS  PubMed  Google Scholar 

  4. Trzciński, W.A., Cudziło, S., Chyłek, Z., and Szymańczyk, L., J. Hazard. Mater., 2008, vol. 157, nos. 2–3, pp. 605–612. https://doi.org/10.1016/j.jhazmat.2008.01.026

    Article  CAS  PubMed  Google Scholar 

  5. Nair, U.R., Asthana, S.N., Subhananda Rao, A., and Gandhe, B.R., Defence Sci. J., 2010, vol. 60, no. 2, pp. 137–151. https://doi.org/10.14429/dsj.60.327

    Article  CAS  Google Scholar 

  6. Liu, Y., Li, F., and Sun, H., Theor. Chem. Acc., 2014, vol. 133, no. 10, ID 1557. https://doi.org/10.1007/s00214-014-1567-5

  7. Jiang, H., Jiao, Q., and Zhang, C., J. Phys. Chem. C, 2018, vol. 122, no. 27, pp. 15125–15132. https://doi.org/10.1021/acs.jpcc.8b03691

    Article  CAS  Google Scholar 

  8. Burnham, A.K., Weese, R.K., Wang, R., Kwok, Q.S.M., and Jones, D.E.G., Thermal properties of FOX-7, 35th Int. Annual Conf. of ICT, Karlsruhe (Germany), 2005, publ. 70.

  9. Gindulyte, A., Massa, L., Huang, L., and Karle, J., J. Phys. Chem. A, 1999, vol. 103, no. 50, pp. 11045–11051. https://doi.org/10.1021/jp991794a

    Article  CAS  Google Scholar 

  10. Khrapkovskii, G.M., Nikolaeva, E.V., Chachkov, D.V., and Shamov, A.G., Russ. J. Gen. Chem., 2004, vol. 74, no. 6, pp. 908–920. https://doi.org/10.1023/B:RUGC.0000042427.28020.77

    Article  CAS  Google Scholar 

  11. Kiselev, V.G. and Gritsan, N.P., J. Phys. Chem. A, 2014, vol. 118, no. 36, pp. 8002–8008. https://doi.org/10.1021/jp507102x

    Article  CAS  PubMed  Google Scholar 

  12. Krisyuk, B.E. and Veretin, V.S., Butlerovsk. Soobshch., 2017, vol. 49, no. 2, pp. 31–35.

  13. Krisyuk, B.E., Russ. J. Phys. Chem. B, 2020, vol. 14, no. 1, pp. 1–4. https://doi.org/10.1134/S1990793120010054

    Article  CAS  Google Scholar 

  14. Bellamy, A.J., Latypov, N.V., and Goede, P., J. Chem. Res. (S), 2002, no. 7, pp. 257–257. https://doi.org/10.3184/030823402103172103

    Article  Google Scholar 

  15. Axthammer, Q.J., Krumm, B., and Klapötke, T.M., J. Phys. Chem. A, 2017, vol. 121, no. 18, pp. 3567–3579. https://doi.org/10.1021/acs.jpca.7b01742

    Article  CAS  PubMed  Google Scholar 

  16. Katritzky, A.R., Sommen, G.L., Gromova, A.V., Witek, R.M., Steel, P.J., and Damavarapu, R., Chem. Heterocyclic Compd., 2005, vol. 41, no. 1, pp. 127–134.

    Article  Google Scholar 

  17. Frumkin, A.E., Yudin, N.V., Suponitsky, K.Yu., and Sheremetev, A.B., Mendeleev Commun., 2018, vol. 28, no. 2, pp. 135–137. https://doi.org/10.1016/j.mencom.2018.03.007

    Article  CAS  Google Scholar 

  18. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision C.01, Wallingford, CT: Gaussian, 2009.

  19. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., and Montgomery, J.A., J. Comput. Chem., 1993, vol. 14, no. 11, pp. 1347–1363. https://doi.org/10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  20. Adamo, C. and Barone, V., J. Chem. Phys., 1999, vol. 110, no. 13, pp. 6158–6170. https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to I.N. Zyuzin for valuable advices in setting the problem and for useful discussion.

Funding

The study was funded by the Institute of Problems of Chemical Physics, Russian Academy of Sciences, theme 0089-2019-0005: Basic and Problem-Oriented Studies in the Field of the Development of Energetic Condensed Systems (ECSs) for Various Purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. E. Krisyuk.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krisyuk, B.E., Sypko, T.M. Effect of Substituents on the Energy Barrier of Internal Rotation in Aminonitroethylenes. Russ J Appl Chem 93, 897–904 (2020). https://doi.org/10.1134/S1070427220060178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220060178

Keywords:

Navigation