Skip to main content
Log in

Influence of the Composition of the Sulfuric Acid Cation Exchanger on the Efficiency of Chromatographic Purification of Petroleum Vanadyl Porphyrins

  • Sorption and Ion Exchange Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The development of efficient methods for preconcentration and purification of petroleum metal porphyrins is the necessary condition for further progress of basic and especially applied research concerning the properties of these compounds and their role in oil genesis and maturation. This study deals with chromatographic preparation of high-purity vanadyl porphyrins using a sulfuric acid cation exchanger that can be readily prepared from silica gel and sulfuric acid and is simple in use. At the silica gel : sulfuric acid : water weight ratio of 60 : 15 : 25, the suggested sulfuric acid cation exchanger retains most efficiently nonporphyrin impurities of the asphaltene polar extract, whereas a significant fraction of vanadyl porphyrins (up to ~50%) passes through the chromatographic column virtually without retention with the stationary phase. In contrast to traditional adsorbents, the suggested sulfuric acid cation exchanger allows preparation of spectrally pure vanadyl porphyrins in one chromatographic purification step, thus ensuring the minimal consumption of the eluent and adsorbent. High purity of the vanadyl porphyrins obtained was confirmed by mass-spectrometric and spectroscopic methods of analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Barona-Castaño, J.C., Carmona-Vargas, C.C., Brocksom, T.J., and de Oliveira, K.T., Molecules, 2016, vol. 21, p. 310. https://doi.org/10.3390/molecules21030310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li, L.L. and Diau, E.W.G., Chem. Soc. Rev., 2013, vol. 42, pp. 291–304. https://doi.org/10.1039/C2CS35257E

    Article  CAS  PubMed  Google Scholar 

  3. Huang, H., Song, W., Rieffel, J., and Lovell, J.F., Front. Phys., 2015, vol. 3, article 23. https://doi.org/10.3389/fphy.2015.00023

  4. Yakutseni, V.P., Petrova, Yu.E., and Sukhanov, A.A., Neftegaz. Geol. Teor. Prakt., 2009, vol. 4, no. 1, article 11_2009.

  5. Zhao, X., Xu, C., and Shi, Q., Structure and Bonding, Xu, C. and Shi, Q., Eds., Cham (Switzerland): Springer, 2015, vol. 168, pp. 39–70. https://doi.org/10.1007/430_2015_189

    Article  CAS  Google Scholar 

  6. Mironov, N.A., Milordov, D.V., Abilova, G.R., Yakubova, S.G., and Yakubov, M.R., Petrol. Chem., 2019, vol. 59, no. 10, pp. 1077–1091. https://doi.org/10.1134/S0965544119100074

    Article  CAS  Google Scholar 

  7. Agaguseinova, M.M. and Abdullaeva, G.N., Khim. Khim. Tekhnol., 2010, vol. 53, no. 9, pp. 12–15. https://doi.org/10.1039/C2CS35257E

    Article  CAS  Google Scholar 

  8. Rytting, B.M., Singh, I.D., Kilpatrick, P.K., Harper, M.R., Mennito, A.S., and Zhang, Y., Energy Fuels, 2018, vol. 32, no. 5, pp. 5711–5724. https://doi.org/10.1021/acs.energyfuels.7b03358

    Article  CAS  Google Scholar 

  9. Mironov, N.A., Sinyashin, K.O., Abilova, G.R., Tazeeva, E.G., Milordov, D.V., Yakubova, S.G., Borisov, D.N., Gryaznov, P.I., Borisova, Y.Y., and Yakubov, M.R., Russ. Chem. Bull., 2017, vol. 66, no. 8, pp. 1450–1455. https://doi.org/10.1007/s11172-017-1907-4

    Article  CAS  Google Scholar 

  10. Mironov, N.A., Abilova, G.R., Sinyashin, K.O., Gryaznov, P.I., Borisova, Y.Y., Milordov, D.V., Tazeeva, E.G., Yakubova, S.G., Borisov, D.N., and Yakubov, M.R., Energy Fuels, 2018, vol. 32, pp. 161–168. https://doi.org/10.1021/acs.energyfuels.7b02816

    Article  CAS  Google Scholar 

  11. Mironov, N.A., Abilova, G.R., Borisova, Y.Y., Tazeeva, E.G., Milordov, D.V., Yakubova, S.G., and Yakubov, M.R., Energy Fuels, 2018, vol. 32, pp. 12435–12446. https://doi.org/10.1021/acs.energyfuels.8b03411

    Article  CAS  Google Scholar 

  12. Yakubov, M.R., Milordov, D.V., Yakubova, S.G., Borisov, D.N., Gryaznov, P.I., Mironov, N.A., Abilova, G.R., Borisova, Y.Y., and Tazeeva, E.G., Petrol. Sci. Technol., 2016, vol. 34, pp. 177–183. https://doi.org/10.1080/10916466.2015.1122627

    Article  CAS  Google Scholar 

  13. Yakubov, M.R., Gryaznov, P.I., Yakubova, S.G., Tazeeva, E.G., Mironov, N.A., and Milordov, D.V., Petrol. Sci. Technol., 2016, vol. 34, pp. 1805–1811. https://doi.org/10.1080/10916466.2016.1230751

    Article  CAS  Google Scholar 

  14. Rowland, S.M., Robbins, W.K., Corilo, Y.E., Marshall, A.G., and Rodgers, R.P., Energy Fuels, 2014, vol. 28, no. 8, pp. 5043–5048. https://doi.org/10.1021/ef5015023

    Article  CAS  Google Scholar 

  15. Gilinskaya, L.G., J. Struct. Chem., 2008, vol. 49, pp. 245–254. https://doi.org/10.1007/s10947-008-0120-6

    Article  CAS  Google Scholar 

  16. Martyanov, O.N., Larichev, Y.V., Morozov, E.V., Trukhan, S.N., and Kazarian, S.N., Russ. Chem. Rev., 2017, vol. 86, no. 11, pp. 999–1023. https://doi.org/10.1070/RCR4742

    Article  CAS  Google Scholar 

  17. Ramachandran, V., Van Tol, J., McKenna, A.M., Rodgers, R.P., Marshall, A.G., and Dalal, N.S., Anal. Chem., 2015, vol. 87, no. 4, pp. 2306–2313. https://doi.org/10.1021/ac504080g

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the staff of Distributed Spectral-Analytical Center of Shared Facilities for Study of Structure, Composition and Properties of Substances and Materials of Federal Research Center of Kazan Scientific Center of Russian Academy of Sciences for their research and assistance in discussing the results.

Funding

The study was financially supported by the Russian Science Foundation (project no. 19-13-00089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Mironov.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironov, N.A., Milordov, D.V., Tazeeva, E.G. et al. Influence of the Composition of the Sulfuric Acid Cation Exchanger on the Efficiency of Chromatographic Purification of Petroleum Vanadyl Porphyrins. Russ J Appl Chem 93, 888–896 (2020). https://doi.org/10.1134/S1070427220060166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220060166

Keywords:

Navigation