Skip to main content
Log in

Electric field near the surface of a plasma with an arbitrary degree of degeneracy as a response to an external alternating electric field

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We analytically solve a boundary value problem for the behavior \((\)oscillation\()\) of an electron plasma with an arbitrary degree of degeneracy of the electron gas in a half-space with mirror boundary conditions. We apply the Vlasov–Boltzmann kinetic equation with a collision integral of the Bhatnagar–Gross–Krook type and a Poisson equation for the electric field. We obtain the electron distribution function and the electric field inside the plasma as expansions in eigensolutions of the initial equation system. We find the expansion coefficients using the boundary conditions. We analyze the behavior of the electric field near interfaces for frequencies close to the plasma oscillation frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

REFERENCES

  1. O. Keller, “Local fields in the electrodynamics of mesoscopic media,” Phys. Rep., 268, 85–262 (1996).

    Article  ADS  Google Scholar 

  2. C. Girard, C. Joachim, and S. Gauthier, “The physics of the near-field,” Rep. Prog. Phys., 63, 893–938 (2000).

    Article  ADS  Google Scholar 

  3. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys., 70, 1–87 (2007); arXiv:cond-mat/0611257v1 [cond-mat.mtrl-sci] (2006).

    Article  ADS  Google Scholar 

  4. S. I. Bozhevolnyi, ed., Plasmonics Nanoguides and Circuits, Pan Stanford Publ., Singapore (2008).

    Book  Google Scholar 

  5. R. Chang, P. T. Leung, S. H. Lin, and W. S. Tse, “Surface-enhanced Raman scattering at cryogenic substrate temperatures,” Phys. Rev. B, 62, 5168–5173 (2000).

    Article  ADS  Google Scholar 

  6. M. Mrejen, A. Israel, H. Taha, M. Palchan, and A. Lewis, “Near-field characterization of extraordinary optical transmission in sub-wavelength aperture arrays,” Opt. Exp., 15, 9130–9138 (2007).

    Article  ADS  Google Scholar 

  7. A. B. Shvartsburg, V. Kuzmiak, and G. Petite, “Optics of subwavelength gradient nanofilms,” Phys. Rep., 452, 33–88 (2007); arXiv:0709.2034v1 [cond-mat.mtrl-sci] (2007).

    Article  ADS  Google Scholar 

  8. A. N. Latyshev and A. A. Yushkanov, “Nanofilm thickness measurement by resonant frequencies,” Quantum Electron., 45, 270–274 (2015).

    Article  ADS  Google Scholar 

  9. A. V. Latyshev and A. A. Yushkanov, “Electron plasma in a metal half-space in an alternating electric field,” Comput. Math. Math. Phys., 41, 1169–1181 (2001).

    MathSciNet  MATH  Google Scholar 

  10. A. V. Latyshev and A. A. Yushkanov, “Degenerate plasma in a half-space under an external electric field,” Theor. Math. Phys., 147, 854–867 (2006).

    Article  Google Scholar 

  11. A. V. Latyshev and A. A. Yushkanov, “Plasma in a high-frequency electric field with a reflective condition on the boundary,” Fluid Dynamics, 41, 161–172 (2006).

    Article  ADS  Google Scholar 

  12. A. V. Latyshev and A. A. Yushkanov, “Nondegenerate plasma with a diffusive boundary condition in a high-frequency electric field near resonance,” Comput. Math. Math. Phys., 47, 118–125 (2007).

    Article  MathSciNet  Google Scholar 

  13. L. Tonks and I. Langmuir, “Oscillations in ionized gases,” Phys. Rev., 33, 195–210 (1929); I. Langmuir, “The interaction of electron and positive ion space charges in cathode sheaths,” Phys. Rev., 33, 954–989 (1929); L. Tonks and I. Langmuir, “A general theory of the plasma of an arc,” Phys. Rev., 34, 876–922 (1929).

    Article  ADS  Google Scholar 

  14. A. A. Vlasov, “On vibrational properties of electronic gas [in Russian],” ZhÉTF, 8, No. 3, 291–318 (1938).

    Google Scholar 

  15. L. D. Landau, “On the vibrations of the electronic plasma [in Russian],” in: Collected Works, Vol. 2, Nauka, Moscow (1969), pp. 7–25; L. Landau, “On the vibrations of the electronic plasma,” J. Phys. (USSR), 10, 25–34 (1946).

    Google Scholar 

  16. N. G. van Kampen, “The dispersion equation for plasma waves,” Phys., 23, 641–650 (1957); “On the theory of stationary waves in plasma,” Phys., 21, 949–963 (1955).

    ADS  MathSciNet  MATH  Google Scholar 

  17. E. M. Lifshitz and L. P. Pitaevskii, Course of Theoretical Physics, [in Russian], Vol. 10, Physical Kinetics, Nauka, Moscow (1979); English transl., Pergamon, Oxford (1981).

    Google Scholar 

  18. V. S. Vladimirov and V. V. Zharinov, Equations of Mathematical Physics, [in Russian], Fizmatlit, Moscow (2000).

    MATH  Google Scholar 

  19. B. B. Kadomtzev, Collective Phenomena in Plasmas, [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  20. F. D. Gakhov, Boundary Value Problems, [in Russian], Nauka, Moscow (1977); English transl., Dover, New York (1990).

    MATH  Google Scholar 

  21. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt, Rinehart, and Winston, New York (1976).

    MATH  Google Scholar 

  22. A. V. Latyshev and S. Sh. Suleimanova, “Riemann boundary value problem in the problem of plasma oscillations with an equilibrium Fermi–Dirac distribution [in Russian],” Vestn. MGOU. Sr. Fiz.-Matem., 1, 40–50 (2017).

    Google Scholar 

  23. V. V. Vedenyapin, “Boundary value problems for the steady-state Vlasov equation,” Sov. Math. Dokl., 34, 335–338 (1987).

    MATH  Google Scholar 

  24. V. V. Vedenyapin, M. A. Negmatov, and N. N. Fimin, “Vlasov-type and Liouville-type equations, their microscopic, energetic, and hydrodynamical consequences,” Izv. Math., 81, 505–541 (2017).

    Article  MathSciNet  Google Scholar 

  25. V. V. Vedenyapin, T. S. Kazakova, V. Ya. Kisselevskaya-Babinina, and B. N. Chetverushkin, “Schrödinger equation as a self-consistent field,” Dokl. Math., 97, 240–242 (2018).

    Article  Google Scholar 

  26. D. Pines, Elementary Excitations in Solids, Benjamin, New York (1963).

    MATH  Google Scholar 

  27. A. V. Latyshev and A. A. Yushkanov, “Reflection of plasma waves from a plane boundary,” Theor. Math. Phys., 150, 425–435 (2007).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Yushkanov.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suleimanova, S.S., Yushkanov, A.A. Electric field near the surface of a plasma with an arbitrary degree of degeneracy as a response to an external alternating electric field. Theor Math Phys 204, 901–917 (2020). https://doi.org/10.1134/S0040577920070053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577920070053

Keywords

Navigation