Skip to main content
Log in

The Effect of Self-Heating on the Modulation Characteristics of a Microdisk Laser

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The operation speed of microdisk lasers with quantum dots working at room temperature without thermal stabilization has been experimentally examined, and the widest modulation bandwidth of microdisks with various diameters has been calculated. It was shown that taking into account the effect of self-heating of a microlaser at high bias currents, which is manifested in a decrease of the ultimate operation speed and in an increase in the current at which the widest modulation bandwidth is reached, enables a good description of the experimental data. The self-heating most strongly affects microlasers with a small diameter (less than 20 μm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M.-H. Mao, H.-C. Chien, J.-Z. Hong, and C.-Y. Cheng, Opt. Express 19, 14145 (2011).

    Article  ADS  Google Scholar 

  2. E. I. Moiseev, N. V. Kryzhanovskaya, F. I. Zubov, M. S. Mikhailovskii, A. N. Abramov, M. V. Maximov, M. M. Kulagina, Yu. A. Guseva, D. A. Livshits, and A. E. Zhukov, Semiconductors 53, 1888 (2019).

    Article  ADS  Google Scholar 

  3. Vertical-Cavity Surface-Emitting Laser Devices, Ed. by H. Li and K. Iga (Springer, Heidelberg, 2003).

    Google Scholar 

  4. A. N. Al-Omari and K. L. Lear, IEEE Photon. Technol. Lett. 17, 1767 (2005).

    Article  ADS  Google Scholar 

  5. P. P. Baveja, B. Kogel, P. Westbergh, J. S. Gustavsson, A. Haglund, D. N. Maywar, G. P. Agrawal, and A. Larsson, Opt. Express 19, 15490 (2011).

    Article  ADS  Google Scholar 

  6. X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, Laser Photon. Rev. 7, 818 (2013).

    Article  ADS  Google Scholar 

  7. Y. Wan, D. Inoue, D. Jung, J. C. Norman, C. Shang, A. C. Gossard, and J. E. Bowers, Photon. Res. 6, 776 (2018).

    Article  Google Scholar 

  8. S. A. Mintairov, N. A. Kalyuzhnyy, V. M. Lantratov, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, and A. E. Zhukov, Nanotecnology 26, 385202 (2015).

    Article  ADS  Google Scholar 

  9. N. V. Kryzhanovskaya, E. I. Moiseev, F. I. Zubov, A. M. Mozharov, M. V. Maximov, N. A. Kalyuzhnyy, S. A. Mintairov, Yu. A. Guseva, M. M. Kulagina, S. A. Blokhin, Yu. Berdnikov, and A. E. Zhukov, J. Appl. Phys. 126, 063107 (2019).

    Article  ADS  Google Scholar 

  10. F. Zubov, M. Maximov, N. Kryzhanovskaya, E. Moiseev, M. Muretova, A. Mozharov, N. Kaluzhnyy, S. Mintairov, M. Kulagina, N. Ledentsov, Jr., L. Chorchos, N. Ledentstsov, and A. Zhukov, Opt. Lett. 44, 5442 (2019).

    Article  ADS  Google Scholar 

  11. F. I. Zubov, E. I. Moiseev, G. O. Kornyshov, N. V. Kryzhanovskaya, Yu. M. Shernyakov, A. S. Payusov, M. M. Kulagina, N. A. Kalyuzhnyi, S. A. Mintairov, M. V. Maksimov, and A. E. Zhukov, Tech. Phys. Lett. 45, 994 (2019).

    Article  ADS  Google Scholar 

  12. E. Moiseev, N. Kryzhanovskaya, M. Maximov, F. Zubov, A. Nadtochiy, M. Kulagina, Yu. Zadiranov, N. Kalyuzhnyy, S. Mintairov, and A. Zhukov, Opt. Lett. 43, 4554 (2018).

    Article  ADS  Google Scholar 

  13. A. E. Zhukov, E. I. Moiseev, N. V. Kryzhanovskaya, S. A. Blokhin, M. M. Kulagina, Yu. A. Guseva, S. A. Mintairov, N. A. Kalyuzhnyy, A. M. Mozharov, F. I. Zubov, and M. V. Maksimov, Semiconductors 53, 1099 (2019).

    Article  ADS  Google Scholar 

  14. N. V. Kryzhanovskaya, E. I. Moiseev, F. I. Zubov, A. M. Mozharov, M. V. Maximov, N. A. Kalyuzhnyy, S. A. Mintairov, M. M. Kulagina, S. A. Blokhin, K. E. Kudryavtsev, A. N. Yablonskiy, S. V. Morozov, Yu. Berdnikov, S. Rouvimov, and A. E. Zhukov, Photon. Res. 7, 664 (2019).

    Article  Google Scholar 

  15. R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 63, 1310 (1993).

    Article  ADS  Google Scholar 

  16. L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (Wiley, Hoboken, 2012).

    Book  Google Scholar 

  17. Semiconductor Lasers I. Fundamentals, Ed. by E. Kapon (Academic, San Diego, 1999).

    Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, contract no. 19-72-30010. The optical study was carried out under the Basic Research Program of the National Research University Higher School of Economics for the year 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Zhukov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Tagirdzhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, A.E., Moiseev, E.I., Nadtochii, A.M. et al. The Effect of Self-Heating on the Modulation Characteristics of a Microdisk Laser. Tech. Phys. Lett. 46, 515–519 (2020). https://doi.org/10.1134/S1063785020060152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785020060152

Keywords:

Navigation