Skip to main content
Log in

Indium-Induced Crystallization of Thin Films of Amorphous Silicon Suboxide

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

A new method of obtaining polycrystalline silicon is proposed which is based on indium-induced crystallization of thin films of amorphous silicon suboxide with stoichiometric coefficient 0.5 (a-SiO0.5). It is established that the use of indium in the course of a-SiO0.5 annealing allows the crystallization temperature to be reduced to 600°C, which is significantly below the temperature of solid-phase crystallization of this material (850°C). The process of indium-induced crystallization of a-SiO0.5 in high vacuum leads to the formation of free-standing micron sized particles of crystalline silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. G. Maity, R. Singhal, S. Dubey, S. Ojha, P. K. Kulriya, S. Dhar, T. Som, D. Kanjilal, and S. P. Patel, J. Non-Cryst. Solids 523, 119628 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.119628

    Article  ADS  Google Scholar 

  2. T. T. Nguyen, M. Hiraiwa, T. Koganezawa, S. Yasuno, and S.-I. Kuroki, Jpn. J. Appl. Phys. 57, 031302 (2018). https://doi.org/10.7567/JJAP.57.031302

    Article  ADS  Google Scholar 

  3. A. Kumar, P. I. Widenborg, G. K. Dalapati, C. Ke, G. S. Subramanian, and A. Aberle, Cryst. Growth Des. 15, 1067 (2015). https://doi.org/10.1021/cg5011659

    Article  Google Scholar 

  4. J. Haschke, D. Amkreutz, and B. Rech, Jpn. J. Appl. Phys. 55, 04EA04 (2016). https://doi.org/10.7567/JJAP.55.04EA04

    Article  Google Scholar 

  5. Z. Wang, L. P. H. Jeurgens, and E. J. Mittemeijer, Metal-Induced Crystallization: Fundamentals and Applications, 1st ed. (CRC Press, Taylor and Francis Group, Boca Raton, 2015). https://doi.org/10.1201/b18032

  6. E. A. Baranov, A. O. Zamchiy, and S. Ya. Khmel, Tech. Phys. Lett. 41, 1023 (2015). https://doi.org/10.1134/S1063785015100181

    Article  ADS  Google Scholar 

  7. A. O. Zamchiy, E. A. Baranov, S. Ya. Khmel, V. A. Volodin, V. I. Vdovin, and A. K. Gutakovskii, Appl. Phys. A 124, 646 (2018). https://doi.org/10.1007/s00339-018-2070-y

    Article  ADS  Google Scholar 

  8. A. O. Zamchiy, E. A. Baranov, E. A. Maximovskiy, V. A. Volodin, V. I. Vdovin, A. K. Gutakovskii, and I. V. Korolkov, Mater. Lett. 261, 127086 (2020). https://doi.org/10.1016/j.matlet.2019.127086

  9. D.-H. Kang and J.-H. Park, Mater. Res. Bull. 60, 814 (2014). https://doi.org/10.1016/j.materresbull.2014.09.037

    Article  Google Scholar 

  10. O. M. Berengue, A. D. Rodrigues, C. J. Dalmaschio, A. J. C. Lanfredi, E. R. Leite, and A. J. Chiquito, J. Phys. D: Appl. Phys. 43, 045401 (2010). https://doi.org/10.1088/0022-3727/43/4/045401

    Article  ADS  Google Scholar 

  11. M. van Sebille, A. Fusi, L. Xie, H. Ali, and R. A. C. M. van Swaaij, Nanotecnology 27, 365601 (2016). https://doi.org/10.1088/0957-4484/27/36/365601

    Article  Google Scholar 

  12. A. O. Zamchiy, E. A. Baranov, I. E. Merkulova, V. A. Volodin, M. R. Sharafutdinov, and S. Y. Khmel, Vacuum 152, 319 (2018). https://doi.org/10.1016/j.vacuum.2018.03.055

    Article  ADS  Google Scholar 

  13. V. B. Neimash, A. O. Goushcha, P. E. Shepeliavyi, V. O. Yukhymchuk, V. A. Dan’ko, V. V. Melnyk, and A. G. Kuzmich, Ukr. J. Phys. 59, 1168 (2014). https://doi.org/10.15407/ujpe59.12.1168

    Article  Google Scholar 

  14. L. Han, M. Zeman, and A. H. M. Smets, Nanoscale 7, 8389 (2015). https://doi.org/10.1039/c5nr00468c

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Center of collective use of devices and equipment “High Technologies and Analytics of Nanosystems” at Novosibirsk State University for kindly providing instrumentation for Raman spectroscopy measurements.

Funding

This investigation was supported by a grant of the President of the Russian Federation (project no. MK-638.2019.8) in the part of In deposition and vacuum furnace annealing of samples and performed in the framework of a state contract with the Kutateladze Institute of Thermophysics SB RAS (Novosibirsk) in the part of synthesis and characterization of a-SiOx films.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Zamchiy.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by P. Pozdeev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamchiy, A.O., Baranov, E., Merkulova, I.E. et al. Indium-Induced Crystallization of Thin Films of Amorphous Silicon Suboxide. Tech. Phys. Lett. 46, 583–586 (2020). https://doi.org/10.1134/S1063785020060280

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785020060280

Keywords:

Navigation