Skip to main content
Log in

Displacements of the Flow Stability Limit under Rotational Rate Modulation

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Possibilities of controlling the stability limit position in the spherical Couette flow are experimentally investigated. The rotational rate of the inner sphere periodically varies with respect to a nonzero average value, and the outer sphere remains motionless. The same as with steady-state rotation, the instability in the form of traveling azimuthal waves is caused by an increase in the average rotational rate. The flow velocity is measured by a laser Doppler anemometer. It is shown that the flow can be both destabilized and stabilized, depending on the modulation amplitude, when the modulation frequency approaches the eigenfrequency of the linear mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. V. Bulanin, V. K. Gusev, G. S. Kurskiev, V. B. Minaev, M. I. Patrov, A. V. Petrov, M. A. Petrov, Yu. V. Petrov, A. Yu. Tel’nova, and A. Yu. Yashin, Tech. Phys. Lett. 43, 1067 (2017).

    Article  ADS  Google Scholar 

  2. M. Jaffrin, Ann. Rev. Fluid Mech. 44, 77 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  3. D. Yu. Zhilenko and O. E. Krivonosova, Tech. Phys. Lett. 43, 493 (2017).

    Article  ADS  Google Scholar 

  4. D. Yu. Zhilenko and O. E. Krivonosova, Tech. Phys. Lett. 45, 870 (2019).

    Article  ADS  Google Scholar 

  5. A. Ya. Nashel’skii, Production of Semiconductor Materials (Metallurgiya, Moscow, 1989) [in Russian].

    Google Scholar 

  6. E. Marensi, A. P. Willis, and R. R. Kerswell, J. Fluid Mech. 863, 850 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  7. C. M. G. Feugaing, O. Crumeyrolle, K.-S. Yang, and I. Mutabazi, Eur. J. Mech. B 44, 82 (2014).

    Article  Google Scholar 

  8. A. B. Vatazhin and O. V. Gus’kov, Fluid Dyn. 45, 39 (2013).

    Article  ADS  Google Scholar 

  9. F. Kaiser, B. Frohnapfel, R. Ostilla-Monico, J. Kriegseis, D. E. Rival, and D. Gatti, J. Fluid Mech. 885, A6 (2020).

    Article  ADS  Google Scholar 

  10. S. M. E. Rabin, C. P. Caulfield, and R. R. Kerswell, J. Fluid Mech. 738, R1 (2014).

    Article  ADS  Google Scholar 

  11. Yu. N. Belyaev and I. M. Yavorskaya, Itogi Nauki Tekh., Ser. Mekh. Zhidk. Gaza 15, 3 (1980).

    Google Scholar 

  12. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).

  13. D. Zhilenko, O. Krivonosova, M. Gritsevich, and P. Read, Chaos 28, 053110 (2018).

    Article  ADS  Google Scholar 

  14. M. Le Bars, D. Cebron, and P. le Gal, Ann. Rev. Fluid Mech. 47, 163 (2015).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported in part by the Russian Foundation for Basic Research, projects nos. 18-08-00074 and 19-05-00028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Zhilenko.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhilenko, D.Y., Krivonosova, O.E. Displacements of the Flow Stability Limit under Rotational Rate Modulation. Tech. Phys. Lett. 46, 591–594 (2020). https://doi.org/10.1134/S1063785020060292

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785020060292

Keywords:

Navigation