Skip to main content
Log in

L-effect Algebras

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

L-effect algebras are introduced as a class of L-algebras which specialize to all known generalizations of effect algebras with a \(\wedge \)-semilattice structure. Moreover, L-effect algebras X arise in connection with quantum sets and Frobenius algebras. The translates of X in the self-similar closure S(X) form a covering, and the structure of X is shown to be equivalent to the compatibility of overlapping translates. A second characterization represents an L-effect algebra in the spirit of closed categories. As an application, it is proved that every lattice effect algebra is an interval in a right \(\ell \)-group, the structure group of the corresponding L-algebra. A block theory for generalized lattice effect algebras, and the existence of a generalized OML as the subalgebra of sharp elements are derived from this description.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, M. K., and D. J. Foulis, Interval and scale effect algebras, Advances in Applied Mathematics 19(2): 200–221, 1997.

    Google Scholar 

  2. Birkhoff, G., and J. von Neumann, The logic of quantum mechanics, Annals of Mathematics 37(4): 823–843, 1936.

    Google Scholar 

  3. Bosbach, B., Rechtskomplementäre Halbgruppen, Mathematische Zeitschrift 124: 273–288, 1972.

    Google Scholar 

  4. Brieskorn, E., and K. Saito, Artin-Gruppen und Coxeter-Gruppen, Inventiones Mathematicae 17: 245–271, 1972.

    Google Scholar 

  5. Chang, C. C., Algebraic analysis of many valued logics, Transactions of the American Mathematical Society 88: 467–490, 1958.

    Google Scholar 

  6. Chang, C. C., A new proof of the completeness of the Łukasiewicz axioms, Transactions of the American Mathematical Society 93: 74–80, 1959.

    Google Scholar 

  7. Chovanec, F., and F. Kôpka, D-posets, Handbook of quantum logic and quantum structures, Elsevier Sci. B. V., Amsterdam, 2007, pp. 367–428.

  8. Darnel, M. R., Theory of lattice-ordered groups, Monographs and Textbooks in Pure and Applied Mathematics, 187, Marcel Dekker, Inc., New York, 1995.

    Google Scholar 

  9. Dehornoy, P., Groups with a complemented presentation, Special volume on the occasion of the 60th birthday of Professor Peter J. Freyd, Journal of Pure and Applied Algebra 116(1–3): 115–137, 1997.

    Google Scholar 

  10. Dehornoy, P., Groupes de Garside, Annales Scientifiques de l’École Normale Supérieure (4) 35(2): 267–306, 2002.

    Google Scholar 

  11. Dehornoy, P., F. Digne, E. Godelle, D. Krammer, and J. Michel, Foundations of Garside Theory, EMS Tracts in Math. 22, European Mathematical Society, 2015.

  12. Deligne, P., Les immeubles des groupes de tresses généralisés, Inventiones Mathematicae 17: 273–302, 1972.

    Google Scholar 

  13. Dietzel, C., A right-invariant lattice order on groups of paraunitary matrices, Journal of Algebra, in press.

  14. Dietzel, C., W. Rump, and X. Zhang, One-sided orthogonality, orthomodular spaces, quantum sets, and a class of Garside groups, Journal of Algebra, in press.

  15. Dvurečenskij, A., Pseudo MV-algebras are intervals in l-groups, Journal of the Australian Mathematical Society 72(3): 427–445, 2002.

    Google Scholar 

  16. Dvurečenskij, A., and S. Pulmannová, New trends in quantum structures, Mathematics and its Applications, 516, Kluwer Academic Publishers, Dordrecht; Ister Science, Bratislava, 2000.

  17. Dvurečenskij, A., and T. Vetterlein, Pseudoeffect algebras, I, Basic properties, International Journal of Theoretical Physics 40(3): 685–701, 2001.

    Google Scholar 

  18. Dvurečenskij, A., and T. Vetterlein, Pseudoeffect algebras, II, Group representations, International Journal of Theoretical Physics 40(3): 703–726, 2001.

    Google Scholar 

  19. Dvurečenskij, A., and T. Vetterlein, Algebras in the positive cone of po-groups, Order 19(2): 127–146, 2002.

    Google Scholar 

  20. Etingof, P., T. Schedler, and A. Soloviev, Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Mathematical Journal 100: 169, 1999.

    Google Scholar 

  21. Finch, P. D., On the lattice structure of quantum logic, Bulletin of the Australian Mathematical Society 1: 333–340, 1969.

    Google Scholar 

  22. Foulis, D. J., Effects, observables, states, and symmetries in physics, Foundations of Physics 37(10): 1421–1446, 2007.

    Google Scholar 

  23. Foulis, D. J., and M. K. Bennett, Effect algebras and unsharp quantum logics, Special issue dedicated to Constantin Piron on the occasion of his sixtieth birthday, Foundations of Physics 24(10): 1331–1352, 1994.

    Google Scholar 

  24. Foulis, D. J., and S. Pulmannová, Logical connectives on lattice effect algebras, Studia Logica 100(6): 1291–1315, 2012.

    Google Scholar 

  25. Galatos, N., and C. Tsinakis, Generalized MV-algebras, Journal of Algebra 283(1): 254–291, 2005.

    Google Scholar 

  26. Giuntini, R., and H. Greuling, Toward a formal language for unsharp properties, Foundations of Physics 19(7): 931–945, 1989.

    Google Scholar 

  27. Greechie, R. J., On the structure of orthomodular lattices satisfying the chain condition, Journal of Combinatorial Theory 4: 210–218, 1968.

    Google Scholar 

  28. Gudder, S., S-dominating effect algebras, International Journal of Theoretical Physics 37(3): 915–923, 1998.

    Google Scholar 

  29. Hedlíková, J., and S. Pulmannová, Generalized difference posets and orthoalgebras, Acta Mathematica Universitatis Comenianae 65(2): 247–279, 1996.

    Google Scholar 

  30. Herman, L., E. L. Marsden, and R. Piziak, Implication connectives in orthomodular lattices, Notre Dame Journal of Formal Logic 16: 305–328, 1975.

    Google Scholar 

  31. Heyting, A., Die formalen Regeln der intuitionistischen Logik, I, II, III, Sitzungsberichte Akad. Berlin 42–56, 57–71, 158–169, 1930.

    Google Scholar 

  32. Janowitz, M. F., A note on generalized orthomodular lattices, Journal of Natural Sciences and Mathematics 8: 89–94, 1968.

    Google Scholar 

  33. Kalmbach, G., Orthomodular lattices, London Mathematical Society Monographs, 18, Academic Press, Inc., London, 1983.

  34. Kalmbach, G., and Z. Riečanová, Z. An axiomatization for abelian relative inverses, Dedicated to T. Traczyk on the occasion of his 70th birthday, Demonstratio Mathematica 27(3–4): 769–780, 1994.

  35. Kôpka, F., Compatibility in D-posets, International Journal of Theoretical Physics 34(8): 1525–1531, 1995.

    Google Scholar 

  36. Lebed, V., and L. Vendramin, Homology of left non-degenerate set-theoretic solutions to the Yang-Baxter equation, Advances in Mathematics 304: 1219–1261, 2017.

    Google Scholar 

  37. Litvinov, G. L., The Maslov dequantization, idempotent and tropical mathematics: a very brief introduction, Idempotent mathematics and mathematical physics, 1-17, Contemp. Math., 377, Amer. Math. Soc., Providence, RI, 2005.

  38. Ludwig, G., Versuch einer axiomatischen Grundlegung der Quantenmechanik und allgemeinerer physikalischer Theorien, Zeitschrift für Physik 181: 233–260, 1964.

    Google Scholar 

  39. Ludwig, G., An axiomatic basis for quantum mechanics, Vol. 1, Derivation of Hilbert space structure, Translated from the German manuscript by Leo F. Boroń, Springer-Verlag, Berlin, 1985.

  40. MacLane, S., Categories for the Working Mathematician, New York 1969.

  41. Mundici, D., Interpretation of \(\text{ AFC }^\ast \) algebras in Łukasiewicz sentential calculus, Journal of Functional Analysis 65: 15–63, 1986.

    Google Scholar 

  42. Navara, M., An orthomodular lattice admitting no group-valued measure, Proceedings of the American Mathematical Society 122(1): 7–12, 1994.

    Google Scholar 

  43. Ravindran, K., On a structure theory of effect algebras, Thesis, Kansas State University, 1996.

  44. Riečanová, Z., Subalgebras, intervals, and central elements of generalized effect algebras, International Journal of Theoretical Physics 38(12): 3209–3220, 1999.

    Google Scholar 

  45. Riečanová, Z., Generalization of blocks for D-lattices and lattice-ordered effect algebras, International Journal of Theoretical Physics 39(2): 231–237, 2000.

    Google Scholar 

  46. Riečanová, Z., Sharp elements in effect algebras, International Journal of Theoretical Physics 40(5): 913–920, 2001.

    Google Scholar 

  47. Riečanová, Z., and I. Marinová: Generalized homogeneous, prelattice and MV-effect algebras, Kybernetika 41(2): 129-142, 2005.

    Google Scholar 

  48. Rump, W., A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation, Advances in Mathematics 193: 40–55, 2005.

    Google Scholar 

  49. Rump, W., Braces, radical rings, and the quantum Yang-Baxter equation, Journal of Algebra 307: 153–170, 2007.

    Google Scholar 

  50. Rump, W., \(L\)-Algebras, Self-similarity, and \(\ell \)-Groups, Journal of Algebra 320(6): 2328–2348, 2008.

    Google Scholar 

  51. Rump, W., Semidirect products in algebraic logic and solutions of the quantum Yang-Baxter equation, Journal of Algebra and Its Applications 7(4): 471–490, 2008.

    Google Scholar 

  52. Rump, W., Right \(l\)-groups, geometric garside groups, and solutions of the quantum Yang-Baxter equation, Journal of Algebra 439: 470–510, 2015.

    Google Scholar 

  53. Rump, W., The structure group of an L-algebra is torsion-free, Journal of Group Theory 20(2): 309–324, 2017.

    Google Scholar 

  54. Rump, W., Decomposition of Garside groups and self-similar L-algebras, Journal of Algebra 485: 118–141, 2017.

    Google Scholar 

  55. Rump, W., The structure group of a generalized orthomodular lattice, Studia Logica 106(1): 85–100, 2018.

    Google Scholar 

  56. Rump, W., Von Neumann algebras, \(L\)-algebras, Baer \({}^\ast \)-monoids, and Garside groups, Forum of Mathematics 30(4): 973–995, 2018.

    Google Scholar 

  57. Rump, W., The L-algebra of Hurwitz primes, Journal of Number Theory 190: 394–413, 2018.

    Google Scholar 

  58. Sasaki, U., Orthocomplemented lattices satisfying the exchange axiom, Journal of Science of the Hiroshima University (Series A) 17: 293–302, 1954.

    Google Scholar 

  59. Wilce, A., Perspectivity and congruence in partial abelian semigroups, Mathematica Slovaca 48(2): 117–135, 1998.

    Google Scholar 

  60. Wu, Y., J. Wang, and Y. Yang, Lattice-ordered effect algebras and L-algebras, Fuzzy Sets and Systems, in press.

Download references

Acknowledgements

Supported by the Natural Science Foundation of Guangdong Province, China (No. 2016A030313832), the Science and Technology Program of Guangzhou, China (No. 201607010190), and the State Scholarship Fund, China (Grant No. 201708440512).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Rump.

Additional information

Dedicated to B. V. M.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rump, W., Zhang, X. L-effect Algebras. Stud Logica 108, 725–750 (2020). https://doi.org/10.1007/s11225-019-09873-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-019-09873-2

Keywords

Mathematics Subject Classification

Navigation