Skip to main content

Advertisement

Log in

Specificity of 3D MSC Spheroids Microenvironment: Impact on MSC Behavior and Properties

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSC) have been considered the promising candidates for the regenerative and personalized medicine due to their self-renewal potential, multilineage differentiation and immunomodulatory capacity. Although these properties have encouraged profound MSC studies in recent years, the majority of research has been based on standard 2D culture utilization. The opportunity to resemble in vivo characteristics of cells native niche has been provided by implementation of 3D culturing models such as MSC spheroid formation assesed through cells self-assembling. In this review, we address the current literature on physical and biochemical features of 3D MSC spheroid microenvironment and their impact on MSC properties and behaviors. Starting with the reduction in the cells’ dimensions and volume due to the changes in adhesion molecules expression and cytoskeletal proteins rearrangement resembling native conditions, through the microenvironment shifts in oxygen, nutrients and metabolites gradients and demands, we focus on distinctive and beneficial features of MSC in spheroids compared to cells cultured in 2D conditions. By summarizing the data for 3D MSC spheroids regarding cell survival, pluripotency, differentiation, immunomodulatory activities and potential to affect tumor cells growth we highlighted advantages and perspectives of MSC spheroids use in regenerative medicine. Further detailed analyses are needed to deepen our understanding of mechanisms responsible for modified MSC behavior in spheroids and to set future directions for MSC clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ben-David, U., Mayshar, Y., & Benvenisty, N. (2011). Large-Scale Analysis Reveals Acquisition of Lineage-Specific Chromosomal Aberrations in Human Adult Stem Cells. Cell Stem Cell, 9(2), 97–102. https://doi.org/10.1016/j.stem.2011.06.013.

    Article  CAS  PubMed  Google Scholar 

  2. Turinetto, V., Vitale, E., & Giachino, C. (2016). Senescence in Human Mesenchymal Stem Cells: Functional Changes and Implications in Stem Cell-Based Therapy. International journal of molecular sciences, 17(7), 1164. https://doi.org/10.3390/ijms17071164.

    Article  CAS  PubMed Central  Google Scholar 

  3. Moscona, A., & Moscona, H. (1952). The dissociation and aggregation of cells from organ rudiments of the early chick embryo. Journal of Anatomy, 86, 287–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sutherland, R. M., & Durand, R. E. (1976). Radiation response of multicell spheroids: An in vitro tumour model. Current Topics in Radiation Research Quarterly, 11, 87–139.

    CAS  PubMed  Google Scholar 

  5. Bartosh, T. J., Ylöstalo, J. H., Bazhanov, N., Kuhlman, J., & Prockop, D. J. (2013). Dynamic compaction of human mesenchymal stem/precursor cells into spheres self-activates caspase-dependent IL1 signaling to enhance secretion of modulators of inflammation and immunity (PGE2, TSG6, and STC1). Stem cells (Dayton, Ohio), 31(11), 2443–2456. https://doi.org/10.1002/stem.1499.

    Article  CAS  Google Scholar 

  6. Kovach, T. K., Dighe, A. S., Lobo, P. I., & Cui, Q. (2015). Interactions between MSCs and immune cells: implications for bone healing. Journal of immunology research, 752510. https://doi.org/10.1155/2015/752510.

  7. Marco, T., Massimo, M., Giovanni, F., Claudio, R., Francesca, P., Marco, G., Barbara, Z., Francesco, P., & Vincenzo, B. (2015). Mechanical influence of tissue culture plates and extracellular matrix on mesenchymal stem cell behavior: A topical review. International Journal of Immunopathology and Pharmacology, 29(1), 3–8.

    Google Scholar 

  8. Murphy, K. C., Hung, B. P., Browne-Bourne, S., Zhou, D., Yeung, J., Genetos, D. C., & Leach, J. K. (2017). Measurement of oxygen tension within mesenchymal stem cell spheroids. Journal of the Royal Society, Interface, 14(127), 20160851. https://doi.org/10.1098/rsif.2016.0851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Murphy, K. C., Fang, S. Y., & Leach, J. K. (2014). Human mesenchymal stem cell spheroids in fibrin hydrogels exhibit improved cell survival and potential for bone healing. Cell and Tissue Research, 357(1), 91–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Shearier, E., Xing, Q., Qian, Z., & Zhao, F. (2016). Physiologically Low Oxygen Enhances Biomolecule Production and Stemness of Mesenchymal Stem Cell Spheroids. Tissue engineering. Part C, Methods, 22(4), 360–369.

    CAS  Google Scholar 

  11. Tsai, A. C., Liu, Y., Yuan, X., & Ma, T. (2015). Compaction, fusion, and functional activation of three-dimensional human mesenchymal stem cell aggregate. Tissue engineering. Part A, 21(9–10), 1705–1719. https://doi.org/10.1089/ten.TEA.2014.0314.

    Article  CAS  Google Scholar 

  12. Zhang, Q., Nguyen, A. L., Shi, S., Hill, C., Wilder-Smith, P., Krasieva, T. B., & Le, A. D. (2012). Three-dimensional spheroid culture of human gingiva-derived mesenchymal stem cells enhances mitigation of chemotherapy-induced oral mucositis. Stem cells and development, 21(6), 937–947. https://doi.org/10.1089/scd.2011.0252.

    Article  CAS  PubMed  Google Scholar 

  13. Yeh, H. Y., Liu, B. H., Sieber, M., & Hsu, S. H. (2014). Substrate-dependent gene regulation of self-assembled human MSC spheroids on chitosan membranes. BMC genomics, 15(1), 10. https://doi.org/10.1186/1471-2164-15-10.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cheng, N. C., Wang, S., & Young, T. H. (2012). The Influence of Spheroid Formation of Human Adipose-Derived Stem Cells on Chitosan Films on Stemness and Differentiation Capabilities. Biomaterials, 33(6), 1748–1758. https://doi.org/10.1016/j.biomaterials.2011.11.049.

    Article  CAS  PubMed  Google Scholar 

  15. Huang, G. S., Dai, L. G., Yen, B. L., & Hsu, S. H. (2011). Spheroid Formation of Mesenchymal Stem Cells on Chitosan and Chitosan-Hyaluronan Membranes. Biomaterials, 32(29), 6929–6945. https://doi.org/10.1016/j.biomaterials.2011.05.092.

    Article  CAS  PubMed  Google Scholar 

  16. Jamalpoor, Z., Soleimani, M., Taromi, N., & Asgari, A. (2019). Comparative Evaluation of Morphology and Osteogenic Behavior of Human Wharton’s Jelly Mesenchymal Stem Cells on 2D Culture Plate and 3D Biomimetic Scaffold. Journal of Cellular Physiology, 234(12), 23123–23134.

    CAS  PubMed  Google Scholar 

  17. Bhang, S. H., Cho, S. W., La, W. G., Lee, T. J., Yang, H. S., Sun, A. Y., Baek, S. H., Rhie, J. W., & Kim, B. S. (2011). Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells. Biomaterials, 32(11), 2734–2747. https://doi.org/10.1016/j.biomaterials.2010.12.035.

    Article  CAS  PubMed  Google Scholar 

  18. Santos, J. M., Camoes, S. P., Filipe, E., Cipriano, M., Barcia, R. N., Filipe, M., Teixeira, M., Simoes, S., Gaspar, M., Mosqueira, D., Nascimento, D. S., Pinto-do, O. P., Cruz, P., Cruz, H., Castro, M., & Miranda, J. P. (2015). Three-dimensional spheroid cell culture of umbilical cord tissue-derived mesenchymal stromal cells leads to enhanced paracrine induction of wound healing. Stem cell research & therapy, 6(1), 90.

    Google Scholar 

  19. Bellotti, C., Duchi, S., Bevilacqua, A., Lucarelli, E., & Piccinini, F. (2016). Long term morphological characterization of mesenchymal stromal cells 3D spheroids built with a rapid method based on entry-level equipment. Cytotechnology, 68(6), 2479–2490.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Saleh, F. A., Frith, J. E., Lee, J. A., & Genever, P. G. (2012). Three-Dimensional In Vitro Culture Techniques for Mesenchymal Stem Cells. In K. Mace & K. Braun (Eds.), Progenitor Cells. Methods in Molecular Biology (Methods and Protocols), 916. Totowa: Humana Press.

    Google Scholar 

  21. Cesarz, Z., Funnell, J. L., Guan, J., & Tamama, K. (2016). Soft Elasticity-Associated Signaling and Bone Morphogenic Protein 2 Are Key Regulators of Mesenchymal Stem Cell Spheroidal Aggregates. Stem Cells Development, 25(8), 622–635.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bartosh, T. J., Ylöstalo, J. H., Mohammadipoor, A., Bazhanov, N., Coble, K., Claypool, K., Lee, R. H., Choi, H., & Prockop, D. J. (2010). Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proceedings of the National Academy of Sciences of the United States of America, 107(31), 13724–13729. https://doi.org/10.1073/pnas.1008117107.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tung, Y.-C., Hsiao, A. Y., Allen, S. G., Torisawa, Y.-S., Ho, M., & Takayama, S. (2011). High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst, 136(3), 473–478.

    CAS  PubMed  Google Scholar 

  24. Cisneros Castillo, L. R., Oancea, A.-D., Stüllein, C., & Régnier-Vigouroux, A. (2016). Evaluation of Consistency in Spheroid Invasion Assays. Scientific Reports, 6, 28375. https://doi.org/10.1038/srep28375.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Redondo-Castro, E., Cunningham, C. J., Miller, J., Cain, S. A., Allan, S. M., & Pinteaux, E. (2018). Generation of Human Mesenchymal Stem Cell 3D Spheroids Using Low-binding Plates. Bio Protoc, 8(16), e2968. https://doi.org/10.21769/BioProtoc.2968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Metzger, W., Sossong, D., Bächle, A., Pütz, N., Wennemuth, G., Pohlemann, T., & Oberringer, M. (2011). The liquid overlay technique is the key to formation of co-culture spheroids consisting of primary osteoblasts, fibroblasts and endothelial cells. Cytotherapy, 13(8), 1000–1012.

    CAS  PubMed  Google Scholar 

  27. Carlsson, J., & Yuhas, J. M. (1984). Liquid-Overlay Culture of Cellular Spheroids. Recent Results in Cancer Research, 95, 1–23.

    CAS  PubMed  Google Scholar 

  28. Andrea, I., & Manfred, K. (2006). Rapid Generation of Single-Tumor Spheroids for High-Throughput Cell Function and Toxicity Analysis. Journal of Biomolecular Screening, 11(8), 922–932.

    Google Scholar 

  29. Frith, J. E., Thomson, B., & Genever, P. G. (2010). Dynamic Three-Dimensional Culture Methods and Increase Therapeutic Potential. Tissue Engineering Part C: Methods, 16(4), 735–749. https://doi.org/10.1089/ten.TEC.2009.0432.

    Article  CAS  Google Scholar 

  30. Cochis, A., Grad, S., Stoddart, M. J., Farè, S., Altomare, L., Azzimonti, B., Alini, M., & Rimondini, L. (2017). Bioreactor mechanically guided 3D mesenchymal stem cell chondrogenesis using a biocompatible novel thermo-reversible methylcellulose-based hydrogel. Scientific Reports, 7, 45018. https://doi.org/10.1038/srep45018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, S., Liu, P., Chen, L., Wang, Y., Wang, Z., & Zhang, B. (2015). The Effects of Spheroid Formation of Adipose-Derived Stem Cells in a Microgravity Bioreactor on Stemness Properties and Therapeutic Potential. Biomaterials, 41, 15–25. https://doi.org/10.1016/j.biomaterials.2014.11.019.

    Article  CAS  PubMed  Google Scholar 

  32. Tsai, A. C., Liu, Y., Yuan, X., Chella, R., & Ma, T. (2017). Aggregation Kinetics of Human Mesenchymal Stem Cells under Wave Motion. Biotechnology Journal, 12(5), 1600448. https://doi.org/10.1002/biot.201600448.

    Article  CAS  Google Scholar 

  33. Kim, H., Bae, C., Kook, Y., et al. (2019). Mesenchymal stem cell 3D encapsulation technologies for biomimetic microenvironment in tissue regeneration. Stem Cell Res Ther, 10, 51. https://doi.org/10.1186/s13287-018-1130-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bellas, E., & Chen, C. S. (2014). Forms, forces, and stem cell fate. Current Opinion in Cell Biology, 31, 92–97.

    CAS  PubMed  Google Scholar 

  35. Fletcher, D. A., & Mullins, R. D. (2010). Cell mechanics and the cytoskeleton. Nature, 463(7280), 485–492. https://doi.org/10.1038/nature08908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ge, J., Guo, L., Wang, S., Zhang, Y., Cai, T., Zhao, R. C. H., & Wu, Y. (2014). The Size of Mesenchymal Stem Cells is a Significant Cause of Vascular Obstructions and Stroke. Stem Cell Reviews and Reports, 10(2), 295–303. https://doi.org/10.1007/s12015-013-9492-x.

    Article  CAS  PubMed  Google Scholar 

  37. Sotirov, R., Kostadinova, M., Pashova, S., Kestendjieva, S., Vinketova, K., Abadjieva, D., Stoyanova, E., Oreshkova, T., Kistanova, E., & Mourdjeva, M. (2018). Morphology of Mesenchymal Stem Cells in 3D spheroids. Acta morphologica et anthropologica, 25, 90–96.

    Google Scholar 

  38. Sart, S., Tsai, A. C., Li, Y., & Ma, T. (2014). Three-dimensional aggregates of mesenchymal stem cells: cellular mechanisms, biological properties, and applications. Tissue engineering. Part B, Reviews, 20(5), 365–380. https://doi.org/10.1089/ten.TEB.2013.0537.

    Article  Google Scholar 

  39. Cui, X., Hartanto, Y., & Zhang, H. (2017). Advances in multicellular spheroids formation. Journal of The Royal Society Interface, 14. https://doi.org/10.1098/rsif.2016.0877.

  40. Lin, R. Z., & Chang, H. Y. (2008). Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnology Journal, 3(9–10), 1172–1184.

    CAS  PubMed  Google Scholar 

  41. Cesarz, Z., & Tamama, K. (2016). Spheroid Culture of Mesenchymal Stem Cells. Stem Cells International, 9176357. https://doi.org/10.1155/2016/9176357.

  42. Occhetta, P., Centola, M., Tonnarelli, B., Redaelli, A., Martin, I., & Rasponi, M. (2015). High-Throughput Microfluidic Platform for 3D Cultures of Mesenchymal Stem Cells, Towards Engineering Developmental Processes. Scientific Reports,10288. https://doi.org/10.1038/srep10288.

  43. Lee, E. J., Park, S. J., Kang, S. K., Kim, G. H., Kang, H. J., Lee, S. W., Jeon, H. B., & Kim, H. S. (2012). Spherical bullet formation via E-cadherin promotes therapeutic potency of mesenchymal stem cells derived from human umbilical cord blood for myocardial infarction. Molecular therapy : the journal of the American Society of Gene Therapy, 20(7), 1424–1433. https://doi.org/10.1038/mt.2012.58.

    Article  CAS  Google Scholar 

  44. Jakubikova, J., Cholujova, D., Hideshima, T., Gronesova, P., Soltysova, A., Harada, T., Joo, J., Kong, S. Y., Szalat, R. E., Richardson, P. G., Munshi, N. C., Dorfman, D. M., & Anderson, K. C. (2016). A novel 3D mesenchymal stem cell model of the multiple myeloma bone marrow niche: biologic and clinical applications. Oncotarget, 7(47), 77326–77341. https://doi.org/10.18632/oncotarget.12643.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hadjiantoniou, S. V., Sean, D., Ignacio, M., Godin, M., Slater, G. W., & Pelling, A. E. (2016). Physical confinement signals regulate the organization of stem cells in three dimensions. Journal of the Royal Society, Interface, 13(123), 20160613. https://doi.org/10.1098/rsif.2016.0613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang, G. S., Hsieha, P. S., Tseng, C. S., & Hsu, S. H. (2014). Substrate-dependent regeneration capacity of mesenchymal stem cell spheroids derived on various biomaterial surfaces. Biomaterial Science, 2, 1652–1660.

    CAS  Google Scholar 

  47. Zhou, Y., Chen, H., Li, H., & Wu, Y. (2017). 3D culture increases pluripotent gene expression in mesenchymal stem cells through relaxation of cytoskeleton tension. Journal of cellular and molecular medicine, 21(6), 1073–1084. https://doi.org/10.1111/jcmm.12946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Potapova, I. A., Brink, P. R., Cohen, I. S., & Doronin, S. V. (2008). Culturing of human mesenchymal stem cells as three-dimensional aggregates induces functional expression of CXCR4 that regulates adhesion to endothelial cells. The Journal of biological chemistry, 283(19), 13100–13107. https://doi.org/10.1074/jbc.M800184200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ahmad, T., Lee, J., Shin, Y. M., Shin, H. J., Madhurakat Perikamana, S. K., Park, S. H., Kim, S. W., & Shin, H. (2017). Hybrid-spheroids incorporating ECM like engineered fragmented fibers potentiate stem cell function by improved cell/cell and cell/ECM interactions. Acta Biomaterialia, 64, 161–175. https://doi.org/10.1016/j.actbio.2017.10.022.

    Article  CAS  PubMed  Google Scholar 

  50. Horton, E. R., Vallmajo-Martin, Q., Martin, I., Snedeker, J. G., Ehrbar, M., & Blache, U. (2020). Extracellular Matrix Production by Mesenchymal Stromal Cells in Hydrogels Facilitates Cell Spreading and Is Inhibited by FGF-2. Adv Healthc Mater., 9(7), e1901669. https://doi.org/10.1002/adhm.201901669.

    Article  CAS  PubMed  Google Scholar 

  51. Deschene, K., Céleste, C., Boerboom, D., & Theoret, C. L. (2012). Hypoxia regulates the expression of extracellular matrix associated proteins in equine dermal fibroblasts via HIF1. J Dermatol Sci., 65(1), 12–18. https://doi.org/10.1016/j.jdermsci.2011.09.006.

    Article  CAS  PubMed  Google Scholar 

  52. Gilkes, D. M., Bajpai, S., Chaturvedi, P., Wirtz, D., & Semenza, G. L. (2013). Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J Biol Chem., 288(15), 10819–10829. https://doi.org/10.1074/jbc.M112.442939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jorgenson, A. J., Choi, K. M., Sicard, D., et al. (2017). TAZ activation drives fibroblast spheroid growth, expression of profibrotic paracrine signals, and context-dependent ECM gene expression. Am J Physiol Cell Physiol., 312(3), C277–C285. https://doi.org/10.1152/ajpcell.00205.2016.

    Article  PubMed  Google Scholar 

  54. Knight, E., & Przyborski, S. (2015). Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. Journal Anatomy, 227, 746–756. https://doi.org/10.1111/joa.12257.

    Article  Google Scholar 

  55. Petrenko, Y., Sykova, E., & Kubinova, S. (2017). The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids. Stem Cell Research & Therapy, 8, 94.

    Google Scholar 

  56. Stepniak, E., Radice, G. L., & Vasioukhin, V. (2009). Adhesive and signaling functions of cadherins and catenins in vertebrate development. Cold Spring Harbor perspectives in biology, 1(5), a002949. https://doi.org/10.1101/cshperspect.a002949.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Klezovitch, O., & Vasioukhin, V. (2015). Cadherin signaling: keeping cells in touch. F1000Research, 4(F1000 Faculty Rev), 550. https://doi.org/10.12688/f1000research.6445.1

  58. Wederell, E. D., & de Longh, R. U. (2006). Extracellular matrix and integrin signaling in lens development and cataract. Seminars in Cell & Developmental Biology, 17(6), 759–776.

    CAS  Google Scholar 

  59. Lewis, N. S., Lewis, E. E., Mullin, M., Wheadon, H., Dalby, M. J., & Berry, C. C. (2017). Magnetically levitated mesenchymal stem cell spheroids cultured with a collagen gel maintain phenotype and quiescence. Journal of tissue engineering, 8, 2041731417704428. https://doi.org/10.1177/2041731417704428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Doyle, A. D., & Yamada, K. M. (2016). Mechanosensing via cell-matrix adhesions in 3D microenvironments. Experimental Cell Research, 343(1), 60–66. https://doi.org/10.1016/j.yexcr.2015.10.033.

    Article  CAS  PubMed  Google Scholar 

  61. Ko, K., Arora, P. D., & McCulloch, C. A. G. (2001). Cadherins Mediate Intercellular Mechanical Signaling in Fibroblasts by Activation of Stretch-sensitive Calcium-permeable Channels. The Journal of Biological Chemistry, 276, 35967–35977.

    CAS  PubMed  Google Scholar 

  62. Yu, H., Tay, C. Y., Leong, W. S., Tan, S. C., Liao, K., & Tan, L. P. (2010). Mechanical behavior of human mesenchymal stem cells during adipogenic and osteogenic differentiation. Biochemical and Biophysical Research Communications, 393(1), 150–155. https://doi.org/10.1016/j.bbrc.2010.01.107.

    Article  CAS  PubMed  Google Scholar 

  63. González-Cruz, R. D., Fonseca, V. C., & Darling, E. M. (2012). Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 109(24), E1523–E1529. https://doi.org/10.1073/pnas.1120349109.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Nikolaev, N., Müller, T., Williams, D. J., & Liu, Y. (2014). Changes in the stiffness of human mesenchymal stem cells with the progress of cell death as measured by atomic force microscopy. Journal of Biomechanics, 47(3), 625–630.

    PubMed  Google Scholar 

  65. Diaz, M. F., Vaidya, A. B., Evans, S. M., Lee, H. J., Aertker, B. M., Alexander, A. J., Price, K. M., Ozuna, J. A., Liao, G. P., Aroom, K. R., Xue, H., Gu, L., Omichi, R., Bedi, S., Olson, S. D., Cox Jr., C. S., & Wenzel, P. L. (2017). Biomechanical Forces Promote Immune Regulatory Function of Bone Marrow Mesenchymal Stromal Cells. Stem Cells, 35(5), 1259–1272. https://doi.org/10.1002/stem.2587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Griffin, M., Premakumar, Y., Seifalian, A., Butler, P. E., & Szarko, M. (2016). Biomechanical Characterization of Human Soft Tissues Using Indentation and Tensile Testing. Journal of visualized experiments: JoVE, 118, 54872. https://doi.org/10.3791/54872.

    Article  Google Scholar 

  67. Foty, R. A., & Steinberg, M. S. (2005). The differential adhesion hypothesis: a direct evaluation. Developmental Biology, 278(1), 255–263.

    CAS  PubMed  Google Scholar 

  68. Brodland, G. W. (2002). The Differential Interfacial Tension Hypothesis (DITH): a comprehensive theory for the self-rearrangement of embryonic cells and tissues. Journal of Biomechanical Engineering, A124(2), 188–197.

    Google Scholar 

  69. Manning, M. L., Foty, R. A., Steinberg, M. S., & Schoetz, E. M. (2010). Coaction of intercellular adhesion and cortical tension specifies tissue surface tension. Proceedings of the National Academy of Sciences of the United States of America, 107, 12517–12522.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Nava, M. M., Raimondi, M. T., & Pietrabissa, R. (2012). Controlling self-renewal and differentiation of stem cells via mechanical cues. Journal of biomedicine & biotechnology, 2012, 797410. https://doi.org/10.1155/2012/797410.

    Article  Google Scholar 

  71. Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126, 677–689.

    CAS  PubMed  Google Scholar 

  72. Van Winkle, A. P., Gates, I. D., & Kallos, M. S. (2012). Mass transfer limitations in embryoid bodies during human embryonic stem cell differentiation. Cells Tissues Organs, 196(1), 34–47.

    PubMed  Google Scholar 

  73. Simon, M. C., & Keith, B. (2008). The role of oxygen availability in embryonic development and stem cell function. Nature Reviews Molecular Cell Biology, 9(4), 285–296.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Cheema, U., Brown, R. A., Alp, B., & MacRobert, A. J. (2008). Spatially defined oxygen gradients and vascular endothelial growth factor expression in an engineered 3D cell model. Cell Molecular Life Sci ence, 65(1), 177–186.

    CAS  Google Scholar 

  75. Lin, R. Z., & Chang, H. Y. (2008). Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnology Journal, 3(9–10), 1172–1184.

    CAS  PubMed  Google Scholar 

  76. Alvarez-Pérez, J., Ballesteros, P., & Cerdán, S. (2005). Microscopic images of intraspheroidal pH by 1H magnetic resonance chemical shift imaging of pH sensitive indicators. MAGMA, 18, 293–231.

    PubMed  Google Scholar 

  77. Achilli, T. M., Meyer, J., & Morgan, J. R. (2012). Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opinion on Biological Therapy, 12, 1347–1360.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Curcio, E., Salerno, S., Barbieri, G., De Bartolo, L., Drioli, E., & Bader, A. (2007). Mass transfer and metabolic reactions in hepatocyte spheroids cultured in rotating wall gas-permeable membrane system. Biomaterials, 28(36), 5487–5497.

    CAS  PubMed  Google Scholar 

  79. Grimes, D. R., Kelly, C., Bloch, K., & Partridge, M. (2014). A method for estimating the oxygen consumption rate in multicellular tumour spheroids. Journal of the Royal Society, Interface, 11(92), 20131124. https://doi.org/10.1098/rsif.2013.1124.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Langan, L. M., Dodd, N. J., Owen, S. F., Purcell, W. M., Jackson, S. K., & Jha, A. N. (2016). Direct Measurements of Oxygen Gradients in Spheroid Culture System Using Electron Parametric Resonance Oximetry. PloS one, 11(2), e0149492. https://doi.org/10.1371/journal.pone.0149492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Grayson, W. L., Zhao, F., Bunnell, B., & Ma, T. (2007). Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochemical and Biophysical Research Communications, 358(3), 948–953.

    CAS  PubMed  Google Scholar 

  82. Tamama, K., Kawasaki, H., Kerpedjieva, S. S., Guan, J., Ganju, R. K., & Sen, C. K. (2011). Differential roles of hypoxia inducible factor subunits in multipotential stromal cells under hypoxic condition. Journal of cellular biochemistry, 112(3), 804–817. https://doi.org/10.1002/jcb.22961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu, Y., Muñoz, N., Tsai, A. C., Logan, T. M., & Ma, T. (2017). Metabolic Reconfiguration Supports Reacquisition of primitive Phenotype in Human Mesenchymal Stem Cell Aggregates. Stem Cells, 35(2), 398–410.

    CAS  PubMed  Google Scholar 

  84. Ylöstalo, J. H., Bartosh, T. J., Coble, K., & Prockop, D. J. (2012). Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype. Stem cells (Dayton, Ohio), 30(10), 2283–2296. https://doi.org/10.1002/stem.1191.

    Article  CAS  Google Scholar 

  85. Kim, J., & Ma, T. (2013). Autocrine fibroblast growth factor 2-mediated interactions between human mesenchymal stem cells and the extracellular matrix under varying oxygen tension. Journal Cell Biochemistry, 114(3), 716–727.

    CAS  Google Scholar 

  86. Xu, Y., Shi, T., Xu, A., & Zhang, L. (2016). 3D spheroid culture enhances survival and therapeutic capacities of MSCs injected into ischemic kidney. Journal of Cellular and Molecular Medicine, 20(7), 1203–1213. https://doi.org/10.1111/jcmm.12651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pennock, R., Bray, E., Pryor, P., James, S., McKeegan, P., Sturmey, R., & Genever, P. (2015). Human cell dedifferentiation in mesenchymal condensates through controlled autophagy. Scientific Reports, 5, 13113. https://doi.org/10.1038/srep13113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hecht, V. C., Sullivan, L. B., Kimmerling, R. J., Kim, D. H., Hosios, A. M., Stockslager, M. A., Stevens, M. M., Kang, J. H., Wirtz, D., Vander Heiden, M. G., & Manalis, S. R. (2016). Biophysical changes reduce energetic demand in growth factor-deprived lymphocytes. The Journal of cell biology, 212(4), 439–447. https://doi.org/10.1083/jcb.201506118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lynch, M., & Marinov, G. K. (2015). The bioenergetic costs of a gene. Proceedings of the National Academy of Sciences of the United States of America, 112(51), 15690–15695. https://doi.org/10.1073/pnas.1514974112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. He, C., & Klionsky, D. J. (2009). Regulation mechanisms and signaling pathways of autophagy. Annual Review of Genetics, 43, 67–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Sbrana, F. V., Cortini, M., Avnet, S., Perut, F., Columbaro, M., De Milito, A., & Baldini, M. (2016). The role of autophagy in the maintenance of stemness and differentiation of mesenchymal stem cells. Stem Cell Reviews and Reports, 12, 621–633. https://doi.org/10.1007/s12015-016-9690-4.

    Article  CAS  PubMed  Google Scholar 

  92. Yang, C. M., Huang, Y. J., & Hsu, S. H. (2015). Enhanced Autophagy of Adipose-Derived Stem Cells Grown on Chitosan Substrates. BioResearch open access, 4(1), 89–96. https://doi.org/10.1089/biores.2014.0032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chiu, H. Y., Tsay, Y. G., & Hung, S. C. (2017). Involvement of mTOR-autophagy in the selection of primitive mesenchymal stem cells in chitosan film 3-dimensional culture. Scientific reports, 7(1), 10113. https://doi.org/10.1038/s41598-017-10708-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lees, J. G., Gardner, D. K., & Harvey, A. J. (2017). Pluripotent Stem Cell Metabolism and Mitochondria: Beyond ATP. Stem cells international, 2874283. https://doi.org/10.1155/2017/2874283.

  95. Jain, I. H., Zazzeron, L., Goli, R., Alexa, K., Schatzman-Bone, S., Dhillon, H., Goldberger, O., Peng, J., Shalem, O., Sanjana, N. E., Zhang, F., Goessling, W., Zapol, W. M., & Mootha, V. K. (2016). Hypoxia as a therapy for mitochondrial disease. Science (New York, N.Y.), 352(6281), 54–61. https://doi.org/10.1126/science.aad9642.

    Article  CAS  Google Scholar 

  96. Katajisto, P., Döhla, J., Chaffer, C. L., Pentinmikko, N., Marjanovic, N., Iqbal, S., Zoncu, R., Chen, W., Weinberg, R. A., & Sabatini, D. M. (2015). Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science (New York, N.Y.), 348(6232), 340–343. https://doi.org/10.1126/science.1260384.

    Article  CAS  Google Scholar 

  97. Pless-Petig, G., Walter, B., Bienholz, A., & Rauen, U. (2017). Mitochondrial Impairment as a Key Factor for the Lack of Attachment after Cold Storage of Hepatocyte Suspensions. Cell transplantation, 26(12), 1855–1867. https://doi.org/10.1177/0963689717743254.

    Article  PubMed  Google Scholar 

  98. Potapova, I. A., Gaudette, G. R., Brink, P. R., Robinson, R. B., Rosen, M. R., Cohen, I. S., & Doronin, S. V. (2007). Mesenchymal stem cells support migration, extracellular matrix invasion, proliferation, and survival of endothelial cells in vitro. Stem Cells, 25(7), 1761–1768. https://doi.org/10.1634/stemcells.2007-0022.

    Article  CAS  PubMed  Google Scholar 

  99. Duggal, S., Fronsdal, K. B., Szoke, K., Shahdadfar, A., Melvik, J. E., & Brinchmann, J. E. (2009). Phenotype and Gene Expression of Human Mesenchymal Stem Cells in Alginate Scaffold. Tissue Engineering Part A, 15(7), 1763–1773. https://doi.org/10.1089/ten.tea.2008.0306.

    Article  CAS  PubMed  Google Scholar 

  100. Bartosh, T. J., & Ylostalo, J. H. (2019). Efficacy of 3D Culture Priming is Maintained in Human Mesenchymal Stem Cells after Extensive Expansion of the Cells. Cells, 8(9), 1031. https://doi.org/10.3390/cells8091031.

    Article  CAS  PubMed Central  Google Scholar 

  101. Guo, L., Zhou, Y., Wang, S., & Wu, Y. (2014). Epigenetic changes of mesenchymal stem cells in three-dimensional (3D) spheroids. Journal of cellular and molecular medicine, 18(10), 2009–2019. https://doi.org/10.1111/jcmm.12336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jeon, S., Lee, H. S., Lee, G. Y., Park, G., Kim, T. M., Shin, J., Lee, C., & Oh, I. H. (2017). Shift of EMT gradient in 3D spheroid MSCs for activation of mesenchymal niche function. Scientific reports, 7(1), 6859. https://doi.org/10.1038/s41598-017-07049-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhu, J., Adli, M., Zou, J. Y., Verstappen, G., Coyne, M., Zhang, X., Durham, T., Miri, M., Deshpande, V., De Jager, P. L., Bennett, D. A., Houmard, J. A., Muoio, D. M., Onder, T. T., Camahort, R., Cowan, C. A., Meissner, A., Epstein, C. B., Shoresh, N., & Bernstein, B. E. (2013). Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell, 152(3), 642–654. https://doi.org/10.1016/j.cell.2012.12.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen, T. S., Lai, R. C., Lee, M. M., Choo, A. B., Lee, C. N., & Lim, S. K. (2010). Mesenchymal Stem Cell Secretes Microparticles Enriched in Pre-MicroRNAs. Nucleic Acids Research, 38(1), 215–224. https://doi.org/10.1093/nar/gkp857.

    Article  CAS  PubMed  Google Scholar 

  105. Tan, Y., Tajik, A., Chen, J., Jia, Q., Chowdhury, F., Wang, L., Chen, J., Zhang, S., Hong, Y., Yi, H., Wu, D. C., Zhang, Y., Wei, F., Poh, Y. C., Seong, J., Singh, R., Lin, L. J., Doğanay, S., Li, Y., Jia, H., et al. (2014). Matrix softness regulates plasticity of tumour-repopulating cells via H3K9 demethylation and Sox2 expression. Nature communications, 5, 4619. https://doi.org/10.1038/ncomms5619.

    Article  CAS  PubMed  Google Scholar 

  106. Bomer, N., den Hollander, W., Suchiman, E., Houtman, E., Slieker, R. C., Heijmans, B. T., Slagboom, P. E., Nelissen, R. G., Ramos, Y. F., & Meulenbelt, I. (2016). Neo-Cartilage Engineered from Primary Chondrocytes Is Epigenetically Similar to Autologous Cartilage, in Contrast to Using Mesenchymal Stem Cells. Osteoarthritis and Cartilage, 24(8), 1423–1430. https://doi.org/10.1016/J.JOCA.2016.03.009.

    Article  CAS  PubMed  Google Scholar 

  107. Lee, C. W., Huang, W. C., Huang, H. D., Huang, Y. H., Ho, J. H., Yang, M. H., Yang, V. W., & Lee, O. K. (2017). DNA Methyltransferases Modulate Hepatogenic Lineage Plasticity of Mesenchymal Stromal Cells. Stem cell reports, 9(1), 247–263. https://doi.org/10.1016/j.stemcr.2017.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Torihashi, S., Ho, M., Kawakubo, Y., Komatsu, K., Nagai, M., Hirayama, Y., Kawabata, Y., Takenaka-Ninagawa, N., Wanachewin, O., Zhuo, L., & Kimata, K. (2015). Acute and temporal expression of tumor necrosis factor (TNF)-α-stimulated gene 6 product, TSG6, in mesenchymal stem cells creates microenvironments required for their successful transplantation into muscle tissue. The Journal of biological chemistry, 290(37), 22771–22781. https://doi.org/10.1074/jbc.M114.629774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., Gifford, D. K., Melton, D. A., Jaenisch, R., & Young, R. A. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122(6), 947–956. https://doi.org/10.1016/j.cell.2005.08.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tsai, C. C., Su, P. F., Huang, Y. F., Yew, T. L., & Hung, S. C. (2012). Oct4 and Nanog Directly Regulate Dnmt1 to Maintain Self-Renewal and Undifferentiated State in Mesenchymal Stem Cells. Molecular Cell, 47(2), 169–182. https://doi.org/10.1016/j.molcel.2012.06.020.

    Article  CAS  PubMed  Google Scholar 

  111. Li, Y., Guo, G., Li, L., Chen, F., Bao, J., Shi, Y. J., & Bu, H. (2015). Three-Dimensional Spheroid Culture of Human Umbilical Cord Mesenchymal Stem Cells Promotes Cell Yield and Stemness Maintenance. Cell and tissue research, 360(2), 297–307. https://doi.org/10.1007/s00441-014-2055-x.

    Article  CAS  PubMed  Google Scholar 

  112. Qiao, Y., Xu, Z., Yu, Y., Hou, S., Geng, J., Xiao, T., Liang, Y., Dong, Q., Mei, Y., Wang, B., Qiao, H., Dai, J., & Suo, G. (2020). Single Cell Derived Spheres of Umbilical Cord Mesenchymal Stem Cells Enhance Cell Stemness Properties, Survival Ability and Therapeutic Potential on Liver Failure. Biomaterials, 227, 119573. https://doi.org/10.1016/j.biomaterials.2019.119573.

    Article  CAS  PubMed  Google Scholar 

  113. Cheng, N. C., Chen, S. Y., Li, J. R., & Young, T. H. (2013). Short-Term Spheroid Formation Enhances the Regenerative Capacity of Adipose-Derived Stem Cells by Promoting Stemness, Angiogenesis, and Chemotaxis. STEM CELLS Translational Medicine, 2(8), 584–594. https://doi.org/10.5966/sctm.2013-0007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang, W., Itaka, K., Ohba, S., Nishiyama, N., Chung, U. I., Yamasaki, Y., & Kataoka, K. (2009). 3D Spheroid Culture System on Micropatterned Substrates for Improved Differentiation Efficiency of Multipotent Mesenchymal Stem Cells. Biomaterials, 30(14), 2705–2715. https://doi.org/10.1016/j.biomaterials.2009.01.030.

    Article  CAS  PubMed  Google Scholar 

  115. Al Madhoun, A., Ali, H., AlKandari, S., Atizado, V. L., Akhter, N., Al-Mulla, F., & Atari, M. (2016). Defined three-dimensional culture conditions mediate efficient induction of definitive endoderm lineage from human umbilical cord Wharton's jelly mesenchymal stem cells. Stem cell research & therapy, 7(1), 165. https://doi.org/10.1186/s13287-016-0426-9.

    Article  CAS  Google Scholar 

  116. Hsueh, Y. Y., Chiang, Y. L., Wu, C. C., & Lin, S. H. (2012). Spheroid Formation and Neural Induction in Human Adipose-Derived Stem Cells on a Chitosan-Coated Surface. Cells Tissues Organs, 196(2), 117–128. https://doi.org/10.1159/000332045.

    Article  CAS  PubMed  Google Scholar 

  117. Engela, A. U., Baan, C. C., Litjens, N. H., Franquesa, M., Betjes, M. G., Weimar, W., & Hoogduijn, M. J. (2013). Mesenchymal stem cells control alloreactive CD8(+) CD28(−) T cells. Clinical and experimental immunology, 174(3), 449–458. https://doi.org/10.1111/cei.12199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. English, K., & Wood, K. J. (2013). Mesenchymal stromal cells in transplantation rejection and tolerance. Cold Spring Harbor perspectives in medicine, 3(5), a015560. https://doi.org/10.1101/cshperspect.a015560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kyurkchiev, D., Bochev, I., Ivanova-Todorova, E., Mourdjeva, M., Oreshkova, T., Belemezova, K., & Kyurkchiev, S. (2014). Secretion of immunoregulatory cytokines by mesenchymal stem cells. World journal of stem cells, 6(5), 552–570. https://doi.org/10.4252/wjsc.v6.i5.552.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Franquesa, M., Hoogduijn, M. J., Bestard, O., & Grinyó, J. M. (2012). Immunomodulatory effect of mesenchymal stem cells on B cells. Frontiers in immunology, 3, 212. https://doi.org/10.3389/fimmu.2012.00212.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Waterman, R. S., Tomchuck, S. L., Henkle, S. L., & Betancourt, A. M. (2010). A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PloS one, 5(4), e10088. https://doi.org/10.1371/journal.pone.0010088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tobin, L. M., Healy, M. E., English, K., & Mahon, B. P. (2013). Human mesenchymal stem cells suppress donor CD4(+) T cell proliferation and reduce pathology in a humanized mouse model of acute graft-versus-host disease. Clinical and experimental immunology, 172(2), 333–348. https://doi.org/10.1111/cei.12056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Miceli, V., Pampalone, M., Vella, S., Carreca, A. P., Amico, G., & Conaldi, P. G. (2019). Comparison of Immunosuppressive and Angiogenic Properties of Human Amnion-Derived Mesenchymal Stem Cells between 2D and 3D Culture Systems. Stem cells international, 2019, 7486279. https://doi.org/10.1155/2019/7486279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sun, Y., Shi, H., Yin, S., Ji, C., Zhang, X., Zhang, B., Wu, P., Shi, Y., Mao, F., Yan, Y., Xu, W., & Qian, H. (2018). Human Mesenchymal Stem Cell Derived Exosomes Alleviate Type 2 Diabetes Mellitus by Reversing Peripheral Insulin Resistance and Relieving beta-Cell Destruction. ACS Nano, 12(8), 7613–7628.

    CAS  PubMed  Google Scholar 

  125. Mohammadi Ghahhari, N., Maghsood, F., Jahandideh, S., Lotfinia, M., Lak, S., Johari, B., Azarnezhad, A., & Kadivar, M. (2018). Secretome of Aggregated Embryonic Stem Cell-Derived Mesenchymal Stem Cell Modulates the Release of Inflammatory Factors in Lipopolysaccharide-Induced Peripheral Blood Mononuclear Cells. Iranian biomedical journal, 22(4), 237–245. https://doi.org/10.22034/ibj.22.4.237.

    Article  PubMed  Google Scholar 

  126. Prockop, D. J. (2013). Concise review: two negative feedback loops place mesenchymal stem/stromal cells at the center of early regulators of inflammation. Stem Cells, 31(10), 2042–2046.

    CAS  PubMed  Google Scholar 

  127. Zimmermann, J. A., & McDevitt, T. C. (2014). Pre-conditioning mesenchymal stromal cell spheroids for immunomodulatory paracrine factor secretion. Cytotherapy, 16(3), 331–345.

    CAS  PubMed  Google Scholar 

  128. Ylostalo, J. H., Bazhanov, N., Mohammadipoor, A., & Bartosh, T. J. (2017). Production and Administration of Therapeutic Mesenchymal Stem/Stromal Cell (MSC) Spheroids Primed in 3-D Cultures Under Xeno-free Conditions. Journal of visualized experiments : JoVE, 121, 55126. https://doi.org/10.3791/55126.

    Article  CAS  Google Scholar 

  129. Saldaña, L., Bensiamar, F., Vallés, G., Mancebo, F. J., García-Rey, E., & Vilaboa, N. (2019). Immunoregulatory potential of mesenchymal stem cells following activation by macrophage-derived soluble factors. Stem cell research & therapy, 10(1), 58. https://doi.org/10.1186/s13287-019-1156-6.

  130. Redondo-Castro, E., Cunningham, C. J., Miller, J., Brown, H., Allan, S. M., & Pinteaux, E. (2018). Changes in the secretome of tri-dimensional spheroid-cultured human mesenchymal stem cells in vitro by interleukin-1 priming. Stem cell research & therapy, 9(1), 11. https://doi.org/10.1186/s13287-017-0753-5.

    Article  CAS  Google Scholar 

  131. Waterman, R. S., Tomchuck, S. L., Henkle, S. L., & Betancourt, A. M. (2010). A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PloS one, 5(4), e10088. https://doi.org/10.1371/journal.pone.0010088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ankrum, J., & Karp, J. M. (2010). Mesenchymal stem cell therapy: Two steps forward, one step back. Trends in Molecular Medicine, 16(5), 203–209.

    PubMed  PubMed Central  Google Scholar 

  133. Dittmer, A., Hohlfeld, K., Lutzkendorf, J., Muller, L. P., & Dittmer, J. (2009). Human mesenchymal stem cells induce E-cadherin degradation in breast carcinoma spheroids by activating ADAM10. Cellular and Molecular Life Sciences : CMLS, 66(18), 3053–3065. https://doi.org/10.1007/s00018-009-0089-0.

    Article  CAS  PubMed  Google Scholar 

  134. Han, H.-W., & Hsu, S.-H. (2016). Chitosan-hyaluronan based 3D co-culture platform for studying the crosstalk of lung cancer cells and mesenchymal stem cells. Acta Biomaterialia, 42, 157–167. https://doi.org/10.1016/j.actbio.2016.06.014.

    Article  CAS  PubMed  Google Scholar 

  135. Kim, J. B. (2005). Three-dimensional tissue culture models in cancer biology. Seminars in Cancer Biology, 15(5), 365–377. https://doi.org/10.1016/j.semcancer.2005.05.002.

    Article  PubMed  Google Scholar 

  136. Devarasetty, M., Wang, E., Soker, S., & Skardal, A. (2017). Mesenchymal stem cells support growth and organization of host-liver colorectal-tumor organoids and possibly resistance to chemotherapy. Biofabrication, 9(2), 021002. https://doi.org/10.1088/1758-5090/aa7484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bhattacharya, S., Zhang, Q., Carmichael, P. L., Boekelheide, K., & Andersen, M. E. (2011). Toxicity Testing in the 21st Century: Defining New Risk Assessment Approaches Based on Perturbation of Intracellular Toxicity Pathways. PLoS ONE, 6(6), e20887. https://doi.org/10.1371/journal.pone.0020887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ylostalo, J. H., Bartosh, T. J., Tiblow, A., & Prockop, D. J. (2014). Unique characteristics of human mesenchymal stromal/progenitor cells pre-activated in 3-dimensional cultures under different conditions. Cytotherapy, 16(11), 1486–1500. https://doi.org/10.1016/j.jcyt.2014.07.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhou, X., Zhu, W., Nowicki, M., Miao, S., Cui, H., Holmes, B., et al. (2016). 3D Bioprinting a Cell-Laden Bone Matrix for Breast Cancer Metastasis Study. ACS Applied Materials & Interfaces, 8(44), 30017–30026. https://doi.org/10.1021/acsami.6b10673.

    Article  CAS  Google Scholar 

  140. Dittmer, A., Hohlfeld, K., Lützkendorf, J., Müller, L. P., & Dittmer, J. (2009). Human mesenchymal stem cells induce E-cadherin degradation in breast carcinoma spheroids by activating ADAM10. Cellular and Molecular Life Sciences,66(18), 3053–65. https://doi.org/10.1007/s00018-009-0089-0.

  141. Van Veldhuizen, P., Lin, T. L., & Kambhampati, S. (2014). A. Novel 3 Dimensional Stromal-based Model for In Vitro Chemotherapy Sensitivity Testing of Leukemia Cells, 55(2), 378–391. https://doi.org/10.3109/10428194.2013.793323.A.

    Article  Google Scholar 

  142. Park, M. H., Song, B., Hong, S., Kim, S. H., & Lee, K. (2016). Biomimetic 3D Clusters Using Human Adipose Derived Mesenchymal Stem Cells and Breast Cancer Cells: A Study on Migration and Invasion of Breast Cancer Cells. Molecular Pharmaceutics, 13(7), 2204–2213. https://doi.org/10.1021/acs.molpharmaceut.5b00953.

    Article  CAS  PubMed  Google Scholar 

  143. Pittenger, M. F., Discher, D. E., Péault, B. M., Phinney, D. G., Hare, J. M., & Caplan, A. I. (2019). Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regenerative medicine, 4, 22. https://doi.org/10.1038/s41536-019-0083-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lee, E. J., Park, S. J., Kang, S. K., Kim, G. H., Kang, H. J., Lee, S. W., Jeon, H. B., & Kim, H. S. (2012). Spherical bullet formation via E-cadherin promotes therapeutic potency of mesenchymal stem cells derived from human umbilical cord blood for myocardial infarction. Molecular therapy : the journal of the American Society of Gene Therapy, 20(7), 1424–1433. https://doi.org/10.1038/mt.2012.58.

    Article  CAS  Google Scholar 

  145. Kim, S. M., Han, Y. S., Lee, J. H., & Lee, S. H. (2018). Combination of MSC spheroids wrapped within autologous composite sheet dually protects against immune rejection and enhances stem cell transplantation efficacy. Tissue and Cell, 53(2018), 93–103. https://doi.org/10.1016/j.tice.2018.06.005.

    Article  CAS  PubMed  Google Scholar 

  146. Imamura, A., Kajiya, H., Fujisaki, S., Maeshiba, M., Yanagi, T., Kojima, H., & Ohno, J. (2019). Three-dimensional spheroids of mesenchymal stem/stromal cells promote osteogenesis by activating stemness and Wnt/β-catenin. Biochemical and Biophysical Research Communications, 523(2), 458–464. https://doi.org/10.1016/j.bbrc.2019.12.066.

    Article  CAS  PubMed  Google Scholar 

  147. Ryan, A. E., et al. (2013). Chondrogenic Differentiation increases antidonor immune response to allogeneic mesenchymal stem cell transplantation. Mol Ther, 22, 655.

    PubMed  PubMed Central  Google Scholar 

  148. Liu, B. H., Yeh, H. Y., Lin, Y. C., Wang, M. H., Chen, D. C., Lee, B. H., & Hsu, S. H. (2013). Spheroid formation and enhanced cardiomyogenic potential of adipose-derived stem cells grown on chitosan. BioResearch open access, 2(1), 28–39. https://doi.org/10.1089/biores.2012.0285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Emmert, M. Y., Wolint, P., Wickboldt, N., Gemayel, G., Weber, B., Brokopp, C. E., Boni, A., Falk, V., Bosman, A., Jaconi, M. E., & Hoerstrup, S. P. (2013). Human stem cell-based three-dimensional microtissues for advanced cardiac cell therapies. Biomaterials, 34, 6339–6354. https://doi.org/10.1016/j.biomaterials.2013.04.034.

    Article  CAS  PubMed  Google Scholar 

  150. Liu, Z. C., & Chang, T. M. S. (2006). Transdifferentiation of bioencapsulated bone marrow cells into hepatocyte-like cells in the 90% hepatectomized rat model. Liver Transplantation, 12, 566–572.

    PubMed  Google Scholar 

  151. Sun, Y., Wang, Y., Zhou, L., Zou, Y., Huang, G., Gao, G., Ting, S., Lei, X., & Ding, X. (2018). Spheroid-cultured human umbilical cord-derived mesenchymal stem cells attenuate hepatic ischemia-reperfusion injury in rats. Scientific Reports, 8, 2518. https://doi.org/10.1038/s41598-018-20975-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Xu, Y., Shi, T., Xu, A., & Zhang, L. (2016). 3D spheroid culture enhances survival and therapeutic capacities of MSCs injected into ischemic kidney. Journal of cellular and molecular medicine, 20(7), 1203–1213. https://doi.org/10.1111/jcmm.12651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ye, F., & Eglen, R. M. (2017). Three-Dimensional Cell Cultures in Drug Discovery and Development. SLAS DISCOVERY: Advancing the Science of Drug Discovery, 22(5), 456–472. https://doi.org/10.1177/1087057117696795.

    Article  CAS  Google Scholar 

  154. Murphy, K. C., Whitehead, J., Zhou, D., Ho, S. S., & Leach, J. K. (2017). Engineering fibrin hydrogels to promote the wound healing potential of mesenchymal stem cell spheroids. Acta Biomaterialia, 64, 176–186. https://doi.org/10.1016/j.actbio.2017.10.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Murphy, K. C., Whitehead, J., Cl, F. P., Zhou, D., Simon, S. I., & Leach, J. K. (2017). Multifactorial Experimental Design to Optimize the Anti-Inflammatory and Proangiogenic Potential of Mesenchymal Stem Cell Spheroids. Stem Cells., 35(6), 1493–1504. https://doi.org/10.1002/stem.2606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Domnina, A., Novikova, P., Obidina, J., et al. (2018). Human mesenchymal stem cells in spheroids improve fertility in model animals with damaged endometrium. Stem Cell Res Ther, 9, 50. https://doi.org/10.1186/s13287-018-0801-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kim, T., Choi, J. H., Jun, Y., et al. (2018). 3D-cultured human placenta-derived mesenchymal stem cell spheroids enhance ovary function by inducing folliculogenesis. Sci Rep, 8, 15313. https://doi.org/10.1038/s41598-018-33575-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Suryaprakash, S., Chan, H. F., Rodriguez, J., Hingtgen, S., & Leong, K. W. (2016). Genetically Engineered Mesenchymal Stem Cell Spheroids for Brain Tumor Therapy. Molecular Therapy, 24(1), S95.

    Google Scholar 

  159. McLeod, C. M., & Mauck, R. L. (2017). On the origin and impact of mesenchymal stem cell heterogeneity: New insights and emerging tools for single cell analysis. European cells & materials, 34, 217–231.

    CAS  Google Scholar 

  160. Cha, J. M., Shin, E. K., Sung, J. H., Moon, G. J., Kim, E. H., Cho, Y. H., Park, H. D., Bae, H., Kim, J., & Bang, O. Y. (2018). Efficient scalable production of therapeutic microvesicles derived from human mesenchymal stem cells. Scientific Reports, 8, 1171. https://doi.org/10.1038/s41598-018-19211-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Langhans, S. (2018). Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Frontiers in Pharmacology, https://doi.org/10.3389/fphar.2018.00006

  162. Ma, W. Y., Hsiung, L. C., Wang, C. H., Chiang, C. L., Lin, C. H., Huang, C. S., & Wo, A. M. (2015). A novel 96well-formatted micro-gap plate enabling drug response profiling on primary tumour samples. Scientific reports, 5, 9656. https://doi.org/10.1038/srep09656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank prof. T. Brevini for critical reading the manuscript and valuable remarks for its improving.

Funding

This work was supported by COST (European Cooperation in Science and Technology) Action CA16119 CellFit (http://cost-cellfit.eu/). The work was also supported by the Ministry of Education, Science and Technological Development, Republic of Serbia (contract number 451–03-68/2020–14/200015), Bulgarian National Science Fund, Sofia, Bulgaria, DCOST01/18 and KP-06COST/21, Ministry of Education, Youth and Sports of the Czech Republic (Grant number LTC-18059).

Author information

Authors and Affiliations

Authors

Contributions

MM, AJ and EK gave the idea, created the conception of the work, interpreted the data and drafted the main version; MJ revised and made contribution to the conception. All performed the literature search and contributed to writing the specific parts of review as follow: AJ,DT,TK - 2.2, 2.3, 3; DA -4; EK -4,6, Table 2; ES-1, 2.1, 6, Table 1; MK-5.4; SP-5.3; SK- 5.1,5.2; MJ- Intr. and Conc., MM-2.1, 5.4, 6, Fig. 2, AJ, TK – Fig. 1. All also approved the final version for publication.

Corresponding author

Correspondence to Milena Mourdjeva.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jauković, A., Abadjieva, D., Trivanović, D. et al. Specificity of 3D MSC Spheroids Microenvironment: Impact on MSC Behavior and Properties. Stem Cell Rev and Rep 16, 853–875 (2020). https://doi.org/10.1007/s12015-020-10006-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-10006-9

Keywords

Navigation