Skip to main content
Log in

Comparative analysis of the effects of chemically and biologically synthesized silver nanoparticles on biomass accumulation and secondary metabolism in callus cultures of Fagonia indica

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Biotechnological strategies are needed to produce larger quantities of biomass and phytochemicals. In this study, callus cultures of Fagonia indica were elicited with different concentrations of chemically and biologically synthesized silver nanoparticles (chem- and bioAgNPs) to compare their effects on biomass, total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activity of the extracts from callus. The results revealed that bioAgNPs being more biocompatible produced the highest biomass initially on day 10 (FW = 4.2152 ± 0.13 g; DW = 0.18527 ± 0.01 g) and day 20 (FW = 7.6558 ± 0.10 g; DW = 0.3489 ± 0.01 g) when supplemented in media as 62.5 µg/mL and 250 µg/mL, respectively. Initially, the highest TPC (319.32 ± 8.28 µg GAE/g of DW) was recorded on day 20 in chemAgNPs (31.25 µg/mL) induced callus as compared to TPC = 302.85 ± 3.002 µg GAE/g of DW in bioAgNPs-induced callus. Compared to the highest values of TFC (108.15 ± 2.10 µg QE/g of DW) produced in 15.6 µg/mL chemAgNPs-induced callus on day 20, TFC produced in bioAgNPs (62.5 µg/mL) was 168.61 ± 3.17 µg GAE/g of DW on day 10. Similarly, chemAgNPs-induced callus (62.5 µg/mL) showed the highest free radical scavenging activity (FRSA) i.e. 87.18% on day 20 while bioAgNPs (125 µg/mL) showed 81.69% FRSA on day 20 compared to highest among control callus (63.98% on day 40). The highest total antioxidant capacity of chemAgNPs-(125 µg/mL) induced callus was 330.42 ± 13.65 µg AAE/g of DW on day 20 compared to bioAgNPs-(62.5 µg/mL) induced callus (312.96 ± 1.73 µg AAE/g of DW) on day 10. Conclusively, bioAgNPs are potent elicitors of callus cultures of F. indica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Acknowledgements

The authors acknowledge the Department of Biotechnology, University of Malakand for continuous support in research activities.

Funding

This research Project was conducted as a part of general graduate research and was partially funded by the Higher Education Commission research project, NRPU 6649.

Author information

Authors and Affiliations

Authors

Contributions

SB, AZ and TK contributed equally to this research and should be considered equal principle authors. SB, and AZ did the research work and wrote the manuscript. TK conceived the idea and supervised the work. NZ provided the resources and guided analytical steps of the research. WA analyzed the data and critically reviewed the work. TK wrote the manuscript and added to its technical part.

Corresponding author

Correspondence to Tariq Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Begum, S., Zahid, A., Khan, T. et al. Comparative analysis of the effects of chemically and biologically synthesized silver nanoparticles on biomass accumulation and secondary metabolism in callus cultures of Fagonia indica. Physiol Mol Biol Plants 26, 1739–1750 (2020). https://doi.org/10.1007/s12298-020-00851-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-020-00851-w

Keywords

Navigation