Skip to main content

Advertisement

Log in

Diosgenin as a Novel Alternative Therapy for Inhibition of Growth, Invasion, and Angiogenesis Abilities of Different Glioblastoma Cell Lines

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Fenugreek (Trigonella foenum-graecum) seeds and roots of wild yam (Dioscorea villosa) possess nutritional and medicinal properties and have been used for centuries in traditional medicine to treat different diseases and inflammatory responses. Diosgenin is a natural steroidal sapogenin extracted from fenugreek and wild yam and it is one of the major bioactive compounds used in the treatment of diabetes, hypercholesterolemia, and inflammation. Recent studies have shown a promising effect of diosgenin as an anti-tumor agent for inhibition of cell proliferation and induction of apoptosis in many cancers such as colon cancer, leukemia, breast cancer, and liver cancer. We examined the effects of different concentrations (5, 10, 15, 20, and 25 µM) of diosgenin on proliferation of rat C6 and human T98G glioblastoma cell lines. We noticed that diosgenin had a high inhibitory effect on the growth of both C6 and T98G cell lines. Diosgenin induced the differentiation of glioblastoma cells, as determined by the increase in the expression of the differentiation marker glial fibrillary acidic protein (GFAP); and decreased the dedifferentiation of the cells, as shown by the decrease in the abundance of the dedifferentiation marker proteins Id2, N-Myc, telomerase reverse transcriptase (TERT), and Notch-1. It also induced apoptosis in C6 and T98G cell lines and the molecular mechanisms involved in the induction of apoptosis included increase in pro-apoptotic Bax protein and decrease in anti-apoptotic Bcl-2 protein. Further, the diosgenin-induced suppression of cell migration was correlated with the decrease in expression of matrix metalloproteinase 2 (MMP2) and MMP9; and the inhibition of angiogenesis, as determined by the tube formation assay, was correlated with a decrease in the protein levels of vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2). In conclusion, diosgenin showed anti-tumor effects in glioblastoma cells by induction of differentiation and apoptosis and inhibition of migration, invasion, and angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mentlein R, Forstreuter F, Mehdorn HM, Held-Feindt J (2004) Functional significance of vascular endothelial growth factor receptor expression on human glioma cells. J Neurooncol 67(1-2):9–18. https://doi.org/10.1023/b:neon.0000021737.89357.cc

    Article  PubMed  Google Scholar 

  2. Brown LB, Eckley M, Wargo KA (2010) A review of glioblastoma multiforme. Oncology 35:3–10

    Google Scholar 

  3. Adamson C, Kanu OO, Mehta AI, Di C, Lin N, Mattox AK, Bigner DD (2009) Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin Investig Drugs 18:1061–1083. https://doi.org/10.1517/13543780903052764

    Article  CAS  PubMed  Google Scholar 

  4. Ozdemir-Kaynak E, Qutub AA, Yesil-Celiktas O (2018) Advances in glioblastoma multiforme treatment: new models for nanoparticle therapy. Front Physiol 19:170. https://doi.org/10.3389/fphys.2018.00170

    Article  Google Scholar 

  5. Ostrom QT, Gittleman H, Xu J, Kromer C, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS (2016) CBTRUS Statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009-2013. Neuro-Oncology 18(5):v1–v75. https://doi.org/10.1093/neuonc/noz150

    Article  PubMed  Google Scholar 

  6. Shabbeer S, Sobolewski M, Anchoori RK, Kachhap S, Hidalgo M, Jimeno A, Davidson N, Carducci MA, Khan SR (2009) Fenugreek: a naturally occurring edible spice as an anticancer agent. Cancer Biol Ther 8:272–280. https://doi.org/10.4161/cbt.8.3.7443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sethi G, Shanmugam MK, Warrier S, Merarchi M, Arfuso F, Kumar AP, Bishayee A (2018) Pro-apoptotic and anti-cancer properties of diosgenin: a comprehensive and critical review. Nutrients 10:5. https://doi.org/10.3390/nu10050645

    Article  CAS  Google Scholar 

  8. Wani SA, Kumar P (2016) Fenugreek: a review on its nutraceutical properties and utilization in various food products. J Saudi Soc Agric Sci 17:97–106. https://doi.org/10.1016/j.jssas.2016.01007

    Article  Google Scholar 

  9. Raju J, Mehta R (2009) Cancer chemopreventive and therapeutic effects of diosgenin, a food saponin. Nutr Cancer 61:27–35. https://doi.org/10.1080/01635580802357352

    Article  CAS  Google Scholar 

  10. Kim JK, Park SU (2018) An update on the biological and pharmacological activities of diosgenin. Excli J. 17:24–28. https://doi.org/10.17179/excli2017-894

    Article  PubMed  PubMed Central  Google Scholar 

  11. Alsemari A, Alkhodairy F, Aldakan A et al (2014) The selective cytotoxic anti-cancer properties and proteomic analysis of Trigonella Foenum-Graecum. BMC Complement Alt Med 14:114. https://doi.org/10.1186/1472-6882-14-114

    Article  CAS  Google Scholar 

  12. Son IS, Kim JH, Sohn HY, Son KH, Kim JS, Kwon CS (2007) Antioxidative and hypolipidemic effects of diosgenin, a steroidal saponin of yam (Dioscorea spp.), on high cholesterol fed rats. Biosci Biotechnol Biochem 71:3063–3071. https://doi.org/10.1271/bbb.70472

    Article  CAS  Google Scholar 

  13. Ahamad S, Kumar P (2018) Fenugreek: a review on its nutraceutical properties and utilization in various food products. J Saudi Soc Agric Sci 17:97–106

    Google Scholar 

  14. Chen Y, Tang YM, Yu SL, Han YW, Kou JP, Liu BL, Yu BY (2015) Advances in the pharmacological activities and mechanisms of diosgenin. Chin J Nat Med 13(8):578–587. https://doi.org/10.1016/S1875-5364(15)30053-4

    Article  CAS  Google Scholar 

  15. Tietze LF, Bell HP, Chandrasekhar S (2003) Natural product hybrids as new leads for drug discovery. Angew Chem Int Ed 42:3996–4028. https://doi.org/10.1002/anie.200200553

    Article  CAS  Google Scholar 

  16. Srinivasan S, Koduru S, Kumar R, Venguswamy G, Kyprianou N, Damodaran C (2009) Diosgenin targets Akt-mediated prosurvival signaling in human breast cancer cells. Int J Cancer 125:961–967. https://doi.org/10.1002/ijc.24419

    Article  CAS  PubMed  Google Scholar 

  17. Li F, Fernandez PP, Rajendran P, Hui KM, Sethi G (2010) Diosgenin, a steroidal saponin, inhibits STAT3 signaling pathway leading to suppression of proliferation and chemosensitization of human hepatocellular carcinoma cells. Cancer Lett 292:197–207. https://doi.org/10.1016/j.canlet.2009.12.003

    Article  CAS  PubMed  Google Scholar 

  18. Moalic S, Liagre B, Corbière C, Bianchi A, Dauça M, Bordji K, Beneytout JL (2001) A plant steroid, diosgenin, induces apoptosis, cell cycle arrest and COX activity in osteosarcoma cells. FEBS Lett 506:225–230. https://doi.org/10.1016/s0014-5793(01)02924-6

    Article  CAS  PubMed  Google Scholar 

  19. Das S, Dey KK, Dey G, Pal I, Majumder A, MaitiChoudhury S, Kundu SC, Mandal M (2012) Antineoplastic and apoptotic potential of traditional medicines thymoquinone and diosgenin in squamous cell carcinoma. PLoS ONE 7:e46641. https://doi.org/10.1371/journal.pone.0046641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen PS, Shih YW, Huang HC, Cheng HW (2011) Diosgenin, a steroidal saponin, inhibits migration and invasion of human prostate cancer PC-3 cells by reducing matrix metallo proteinase expression. PLoS ONE 6:e20164. https://doi.org/10.1371/journal.pone.0020164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He Z, Chen H, Li G, Zhu H, Gao Y, Zhang L, Sun J (2014) Diosgenin inhibits the migration of human breast cancer MDA-MB-231 cells by suppressing VAV2 activity. Phytomedicine 21:871–876. https://doi.org/10.1016/j.phymed.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  22. Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M (2004) PI3K/Akt signaling pathway and cancer. Cancer Treat Rev 30:193–204. https://doi.org/10.1016/j.ctrv.2003.07.007

    Article  CAS  PubMed  Google Scholar 

  23. Shishodia S, Aggarwal BB (2006) Diosgenin inhibits osteoclastogenesis, invasion, and proliferation through the downregulation of Akt, IκB kinase activation and NF-κB-regulated gene expression. Oncogene 25:1463–1473. https://doi.org/10.1038/sj.onc.1209194

    Article  CAS  PubMed  Google Scholar 

  24. Liao WL, Lin JY, Shieh JC, Yeh H, Hsieh Y, Cheng Y, Lee H, Shen C, Cheng C (2019) Induction of G2/M phase arrest by diosgenin via activation of Chk1 kinase and Cdc25C regulatory pathways to promote apoptosis in human breast cancer cells. Int J Mol Sci 21(1):172. https://doi.org/10.3390/ijms21010172

    Article  CAS  PubMed Central  Google Scholar 

  25. Raju J, Rao CV (2012) Diosgenin, a steroid saponin constituent of yams and fenugreek: emerging evidence for applications in medicine. In: Rasooli I (ed) Bioactive compounds in phytomedicine. InTech, Rijeka, pp 125–142. https://doi.org/10.5772/26700

  26. Salakou S, Kardamakis D, Tsamandas AC, Zolota V, Apostolakis E, Tzelepi V, Papathanasopoulos P, Bonikos DS, Papapetropoulos T, Petsas T, Dougenis D (2007) Increased Bax/Bcl-2 ratio up-regulates caspase-3 and increases apoptosis in the thymus of patients with myasthenia gravis. Vivo 21:123–132

    CAS  Google Scholar 

  27. Kim DS, Jeon BK, Lee YE, Woo WH, Mun YJ (2012) Diosgenin Induces Apoptosis in HepG2 cells through generation of reactive oxygen species and mitochondrial pathway. Evidence-based complementary and alternative medicine. 2012:981675. https://doi.org/10.1155/2012/981675

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kroemer G, Petit P, Zamzami N, Vayssière JL, Mignotte B (1995) The biochemistry of programmed cell death. FASEB J 9:1277–1287. https://doi.org/10.1096/fasebj.9.13.7557017

    Article  CAS  PubMed  Google Scholar 

  29. Samejima K, Ogawa H, Ageichik AV, Peterson KL, Kaufmann SH, Kanemaki MT, Earnshaw WC (2014) Auxin-induced rapid degradation of inhibitor of caspase-activated DNase (ICAD) induces apoptotic DNA fragmentation, caspase activation, and cell death: a cell suicide module. J Biol Chem 289:31617–31623. https://doi.org/10.1074/jbc.m114.583542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu M, Wang Z, Ju Y, Wong RN, Wu QY (2005) Diosgenin induces cell cycle arrest and apoptosis in human leukemia K562 cells with the disruption of Ca2+ homeostasis. Cancer Chemother Pharmacol 55(1):79–90. https://doi.org/10.1007/s00280-004-0849-3

    Article  CAS  Google Scholar 

  31. Lepage C, Léger DY, Bertrand J, Martin F, Beneytout JL, Liagre B (2011) Diosgenin induces death receptor-5 through activation of p38 pathway and promotes TRAIL-induced apoptosis in colon cancer cells. Cancer Lett 301(2):193–202. https://doi.org/10.1016/j.canlet.2010.12.003

    Article  CAS  PubMed  Google Scholar 

  32. Lv L, Zheng L, Dong D, Xu L, Yin L, Xu Y, Qi Y, Han X, Peng J (2013) Dioscin, a natural steroid saponin, induces apoptosis and DNA damage through reactive oxygen species: a potential new drug for treatment of glioblastoma multiforme. Food Chem Toxicol 59:657–669. https://doi.org/10.1016/j.fct.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  33. Xiao L, Guo D, Hu C, Shen W, Shan L, Li C, Liu X, Yang W, Zhang W, He C (2012) Diosgenin promotes oligodendrocyte progenitor cell differentiation through estrogen receptor- mediated ERK1/2 activation to accelerate remyelination. Glia 60:1037–1052. https://doi.org/10.1002/glia.22333

    Article  PubMed  Google Scholar 

  34. Janardhanan R, Butler JT, Banik NL, Ray SK (2009) N-(4-Hydroxyphenyl) retinamide potentiated paclitaxel for cell cycle arrest and apoptosis in glioblastoma C6 and RG2 cells. Brain Res 1268:142–153. https://doi.org/10.1016/j.brainres.2009.02.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu KJ, Grandori C, Amacker M et al (1999) Direct activation of TERT transcription by c-MYC. Nat Genet 21(2):220–224. https://doi.org/10.1038/6010

    Article  CAS  PubMed  Google Scholar 

  36. Nappez C, Liagre B, Beneytout JL (1995) Changes in lipoxygenase activities in human erythroleukemia (HEL) cells during diosgenin-induced differentiation. Cancer Lett 96:133–140

    Article  CAS  Google Scholar 

  37. Mao ZJ, Tang QJ, Zhang CA, Qin ZF, Pang B, Wei PK, Liu B, Chou YN (2012) Anti-proliferation and anti-invasion effects of diosgenin on gastric cancer BGC-823 cells with HIF-1α shRNAs. Int J Mol Sci 13:6521–6533. https://doi.org/10.3390/ijms1305652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Park CM, Park MJ, Kwak HJ, Lee HC, Kim MS, Lee SH, Park IC, Rhee CH, Hong SI (2006) Ionizing radiation enhances matrix metalloproteinase-2 secretion and invasion of glioma cells through Src/epidermal growth factor receptor-mediated p38/Akt and phosphatidylinositol 3-kinase/Akt signaling pathways. Cancer Res 66:8511–8519. https://doi.org/10.1158/0008-5472.can-05-4340

    Article  CAS  PubMed  Google Scholar 

  39. Liu Y, Zheng J, Zhang Y, Wang Z, Yang Y, Bai M, Dai Y (2016) Fucoxanthin activates apoptosis via inhibition of PI3K/Akt/mTOR pathway and suppresses invasion and migration by restriction of p38-MMP-2/9 pathway in human glioblastoma cells. Neurochem Res 41(10):2728–2751. https://doi.org/10.1007/s11064-016-1989-7

    Article  CAS  PubMed  Google Scholar 

  40. Kubiatowski T, Jang T, Lachyankar MB, Salmonsen R, Nabi RR, Quesenberry PJ, Litofsky NS, Ross AH, Recht LD (2001) Association of increased phosphatidylinositol 3-kinase signaling with increased invasiveness and gelatinase activity in malignant gliomas. J Neurosurg 95:480–488. https://doi.org/10.3171/jns.2001

    Article  CAS  PubMed  Google Scholar 

  41. Yu H, Liu Y, Niu C, Cheng Y (2018) Diosgenin increased DDX3 expression in hepatocellular carcinoma. Am J Transl Res 10:3590–3599

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jang HS, Lal S, Greenwood JA (2010) Calpain 2 is required for glioblastoma cell invasion: regulation of matrix metalloproteinase 2. Neurochem Res 35(11):1796–1804. https://doi.org/10.1007/s11064-010-0246-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cortesio CL, Chan KT, Perrin BJ, Burton NO, Zhang S, Zhang ZY, Huttenlocher A (2008) Calpain 2 and PTP1B function in a novel pathway with Src to regulate invadopodia dynamics and breast cancer cell invasion. J Cell Biol 180:957–971. https://doi.org/10.1083/jcb.200708048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG (2005) Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro Oncology 7:134–153. https://doi.org/10.1215/s1152851704001115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang L, Xue Y, Shen Y, Li W, Cheng Y, Yan X, Shi W, Wang J, Gong Z, Yang G, Guo Chuanliang, Zhou Yiye, Wang Xiang, Zhou Qi, Zeng F (2012) Claudin 6: a novel surface marker for characterizing mouse pluripotent stem cells. Cell Res 22:1082–1085. https://doi.org/10.1038/cr.2012.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang L, Zhang L, Shen W, Liu Y, Luo Y (2016) High expression of VEGF and PI3K in glioma stem cells provides new criteria for the grading of gliomas. Exp Ther Med 11:571–576. https://doi.org/10.3892/etm.2015.2906

    Article  CAS  PubMed  Google Scholar 

  47. Rajesh Y, Biswas A, Das S, Manda M (2017) Diosgenin and temozolamide: a potential combinatorial chemotherapy to overcome temozolamide resistance in glioblastoma multiforme [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 4105. https://doi.org/10.1158/1538-7445.am2017-4105

  48. Ignarro RS, Facchini G, de Melo DR, Pelizzaro-Rocha KJ, Ferreira CV, Castilho RF, Rogerio F (2016) Characteristics of sulfasalazine-induced cytotoxicity in C6 rat glioma cells. Neurosci Lett 638:189–195. https://doi.org/10.1016/j.neulet.2016.12.035

    Article  CAS  PubMed  Google Scholar 

  49. Kodera T, Nakagawa T, Kubota T, Kabuto M, Sato K, Kobayashi H (2000) The expression and activation of matrix metalloproteinase-2 in rat brain after implantation of C6 rat glioma cells. J Neurooncol 46(2):105–114

    Article  CAS  Google Scholar 

  50. Giakoumettis D, Kritis A, Foroglou N (2018) C6 cell line: the gold standard in glioma research. Hippokratia 3:105–112

    Google Scholar 

  51. Plate KH, Breier G, Millauer B, Ullrich A, Risau W (1993) Up-regulation of vascular endothelial growth factor and its cognate receptors in a rat glioma model of tumor angiogenesis. Cancer Res 53(23):5822–5827

    CAS  PubMed  Google Scholar 

  52. Giard DJ, Aaronson SA, Todaro GJ et al (1973) In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst 51(5):1417–1423. https://doi.org/10.1093/jnci/51.5.1417

    Article  CAS  PubMed  Google Scholar 

  53. Weinmann L, Wischhusen J, Demma MJ, Naumann U, Roth P, Dasmahapatra B, Weller M (2008) A novel p53 rescue compound induces p53-dependent growth arrest and sensitises glioma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ 15(4):718–729. https://doi.org/10.1038/sj.cdd.4402301

    Article  CAS  PubMed  Google Scholar 

  54. Dziembowska Magdalena, Danilkiewicz Malgorzata, Wesolowska Aleksandra, Zupanska Agata, Chouaib Salem, Kaminska Bozena (2007) Cross-talk between Smad and p38 MAPK signalling in transforming growth factor β signal transduction in human glioblastoma cells. Biochem Biophys Res Commun 354(4):1101–1106. https://doi.org/10.1016/j.bbrc.2007.01.113

    Article  CAS  PubMed  Google Scholar 

  55. Kiseleva LN, Kartashev AV, Vartanyan NL, Pinevich AA, Samoilovich MP (2016) Characteristics of A172 and T98G cell lines. Tsitologiia 58(5):349–355

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported in part by the R01 grants (CA-091460 and NS-057811) from the National Institutes of Health (Bethesda, MD, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan K. Ray.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khathayer, F., Ray, S.K. Diosgenin as a Novel Alternative Therapy for Inhibition of Growth, Invasion, and Angiogenesis Abilities of Different Glioblastoma Cell Lines. Neurochem Res 45, 2336–2351 (2020). https://doi.org/10.1007/s11064-020-03093-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03093-0

Keywords

Navigation