Skip to main content

Advertisement

Log in

Tracking control of an SMA-driven actuator with rate-dependent behavior using an inverse model of hysteresis

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Hysteresis is a nonlinear phenomenon which may cause inaccuracies and delay in control applications. Shape memory alloys (SMAs) have an asymmetric saturated hysteresis. In addition, the excitation frequency changes the hysteresis behavior of SMA-driven systems and makes them challenging to track reference inputs at different frequencies. In this study, a rate-dependent Prandtl–Ishlinskii model coupled with a deadband function is proposed to characterize the asymmetric and saturated hysteresis behavior as well as its rate-dependency. Unknown parameters of the model are identified using genetic optimization algorithm in MATLAB Toolbox based on measured data. The identified model is validated to consider the excitation frequency effect with a different measured data set. The inverse model is also proposed as a compensator to mitigate hysteresis nonlinearity effects especially the frequency effect in tracking control. Although the proposed compensator cannot fully compensate for hysteresis effects, it can reduce the input–output hysteresis. The proposed rate-dependent compensator as a feedforward controller combined with a proportional–integral–derivative (PID) controller as a feedback mitigates hysteresis effects. The PID controller is used to improve the accuracy of compensated system and remove the steady-state error. Experimental results illustrate that the proposed controller has a great accuracy in tracking control to consider the excitation frequency effect as well as the asymmetric saturated hysteresis.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Evangeliou N, Tzes A (2017) Design and control of a robotic platform for dexterous minimally invasive surgical applications. Int Rev Autom Control 10(5):443–450

    Google Scholar 

  2. Park SJ, Park CH (2019) Suit-type wearable robot powered by shape-memory-alloy-based fabric muscle. Sci Rep 9(1):9157

    Article  Google Scholar 

  3. Mirzakhani F, Ayati S, Fahimi P, Baghani M (2019) Online force control of a shape-memory-alloy-based 2 degree-of-freedom human finger via inverse model and proportional–integral–derivative compensator. J Intell Mater Syst Struct 30(10):1538–1548

    Article  Google Scholar 

  4. Basaeri H, Zakerzadeh MR, Yousefi Koma A, Mohtasebi SS (2015) Design and aerodynamic analysis of a morphing wing with shape memory alloy actuator. Modares Mech Eng 15(5):60–70

    Google Scholar 

  5. Williams EA, Shaw G, Elahinia M (2010) Control of an automotive shape memory alloy mirror actuator. Mechatronics 20(5):527–534

    Article  Google Scholar 

  6. Shakiba S, Abedi M, Vedadi A (2020) Behavioral modeling and experimental verification of a smart servomotor used in a thermal control louver of a satellite using dynamic neural network-based NARX. AUT J Mech Eng. https://doi.org/10.22060/ajme.2020.16517.5822

    Article  Google Scholar 

  7. de Abreu GLCM, Maesta MF, Junior VL, Junior CDM, Faria CT, Inman DJ (2015) Active angular control of a sectioned airfoil using shape memory alloys and fuzzy controller. J Braz Soc Mech Sci Eng 37(5):1555–1567

    Article  Google Scholar 

  8. Copaci D-S, Blanco D, Martin-Clemente A, Moreno L (2020) Flexible shape memory alloy actuators for soft robotics: modelling and control. Int J Adv Rob Syst 17(1):1729881419886747

    Google Scholar 

  9. Borges JM et al (2018) On the active control of a rotor-bearing system using shape memory alloy actuators: an experimental analysis. J Braz Soc Mech Sci Eng 40(5):269

    Article  Google Scholar 

  10. Choudhary N, Kaur D (2016) Shape memory alloy thin films and heterostructures for MEMS applications: a review. Sens Actuators A 242:162–181

    Article  Google Scholar 

  11. Lan C-C, Fan C-H (2010) An accurate self-sensing method for the control of shape memory alloy actuated flexures. Sens Actuators A 163(1):323–332

    Article  Google Scholar 

  12. Gédouin P-A, Delaleau E, Bourgeot J-M, Join C, Arbab Chirani S, Calloch S (2011) Experimental comparison of classical PID and model-free control: Position control of a shape memory alloy active spring. Control Eng Pract 19(5):433–441

    Article  Google Scholar 

  13. Lee J, Jin M, Ahn KK (2013) Precise tracking control of shape memory alloy actuator systems using hyperbolic tangential sliding mode control with time delay estimation. Mechatronics 23(3):310–317

    Article  Google Scholar 

  14. Moghadam MH, Zakerzadeh MR, Ayati M (2019) Development of a cascade position control system for an SMA-actuated rotary actuator with improved experimental tracking results. J Braz Soc Mech Sci Eng 41(10):407

    Article  Google Scholar 

  15. Elahinia MH, Seigler TM, Leo DJ, Ahmadian M (2004) Nonlinear stress-based control of a rotary SMA-actuated manipulator. J Intell Mater Syst Struct 15(6):495–508

    Article  Google Scholar 

  16. Moghadam MH, Zakerzadeh MR, Ayati M (2019) Robust sliding mode position control of a fast response SMA-actuated rotary actuator using temperature and strain feedback. Sens Actuators A 292:158–168

    Article  Google Scholar 

  17. Li J, Tian H (2018) Position control of SMA actuator based on inverse empirical model and SMC-RBF compensation. Mech Syst Signal Process 108:203–215

    Article  Google Scholar 

  18. Sayyaadi H, Zakerzadeh MR (2012) Position control of shape memory alloy actuator based on the generalized Prandtl–Ishlinskii inverse model. Mechatronics 22(7):945–957

    Article  Google Scholar 

  19. Zakerzadeh MR, Sayyaadi H (2013) Precise position control of shape memory alloy actuator using inverse hysteresis model and model reference adaptive control system. Mechatronics 23(8):1150–1162

    Article  Google Scholar 

  20. Janaideh MA, Su C-Y, Rakheja S (2008) Development of the rate-dependent Prandtl–Ishlinskii model for smart actuators. Smart Mater Struct 17(3):035026

    Article  Google Scholar 

  21. Al Janaideh M (2013) A time-dependent stop operator for modeling a class of singular hysteresis loops in a piezoceramic actuator. Physica B Condens Matter 413:100–104

    Article  Google Scholar 

  22. Al Janaideh M, Krejci P (2013) Inverse rate-dependent Prandtl-Ishlinskii model for feedforward compensation of hysteresis in a piezomicropositioning actuator. IEEE/ASME Trans Mechatron 18(5):1498–1507

    Article  Google Scholar 

  23. Aljanaideh O, Rakheja S, Su C-Y (2014) Experimental characterization and modeling of rate-dependent asymmetric hysteresis of magnetostrictive actuators. Smart Mater Struct 23(3):035002

    Article  Google Scholar 

  24. Shakiba S, Yousefi-Koma A, Jokar M, Zakerzadeh MR, Basaeri H (2020) Modeling and characterization of the shape memory alloy–based morphing wing behavior using proposed rate-dependent Prandtl–Ishlinskii models. Proc Inst Mech Eng Part I J Syst Control Eng 234(4):550–565

    Google Scholar 

  25. Al Janaideh M, Aljanaideh O (2018) Further results on open-loop compensation of rate-dependent hysteresis in a magnetostrictive actuator with the Prandtl-Ishlinskii model. Mech Syst Signal Process 104:835–850

    Article  Google Scholar 

  26. Aljanaideh O, Al-Tahat MD, Al Janaideh M (2016) Rate-bias-dependent hysteresis modeling of a magnetostrictive transducer. Microsyst Technol 22:883–892

    Article  Google Scholar 

  27. Aljanaideh O, Al Janaideh M, Rakheja S, Su C-Y (2013) Compensation of rate-dependent hysteresis nonlinearities in a magnetostrictive actuator using an inverse Prandtl-Ishlinskii model. Smart Mater Struct 22(2):025027

    Article  Google Scholar 

  28. Ang WT, Khosla PK, Riviere CN (2007) Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Trans Mechatron 12(2):134–142

    Article  Google Scholar 

  29. Shakiba S, Zakerzadeh MR, Ayati M (2018) Experimental characterization and control of a magnetic shape memory alloy actuator using the modified generalized rate-dependent Prandtl–Ishlinskii hysteresis model. Proc Inst Mech Eng Part I J Syst Control Eng 232(5):506–518

    Google Scholar 

  30. Riccardi L, Naso D, Turchiano B, Janocha H, Palagachev DK (2012) On PID control of dynamic systems with hysteresis using a Prandtl–Ishlinskii model. In: 2012 American control conference (ACC). IEEE, pp 1670–1675

  31. Al Janaideh M, Feng Y, Rakheja S, Tan Y, Su C-Y (2009) Generalized Prandtl–Ishlinskii hysteresis: modeling and robust control for smart actuators. In: Proceedings of the 48th IEEE conference on decision and control (CDC) held jointly with 2009 28th Chinese control conference. IEEE, pp 7279–7284

  32. Al Janaideh M, Feng Y, Rakheja S, Su C-Y, Rabbath CA (2009) Hysteresis compensation for smart actuators using inverse generalized Prandtl–Ishlinskii model. In: 2009 American control conference. IEEE, pp 307–312

Download references

Funding

Funding was provided by Iran National Science Foundation (Grant No. 97018481).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aghil Yousefi-Koma.

Additional information

Technical Editor: Pedro Manuel Calas Lopes Pacheco, D.Sc.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakiba, S., Yousefi-Koma, A. & Ayati, M. Tracking control of an SMA-driven actuator with rate-dependent behavior using an inverse model of hysteresis. J Braz. Soc. Mech. Sci. Eng. 42, 418 (2020). https://doi.org/10.1007/s40430-020-02486-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02486-0

Keywords

Navigation