Skip to main content
Log in

Research Progress of Thermal Contact Resistance

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Thermal contact resistance of solid–solid interface is involved in many fields such as aerospace, low-temperature superconductivity and electronic machinery. With the booming of aerospace technology, the requirements for space detectors continue to increase; the research on accurate prediction, measurement and utilization of thermal contact resistance is becoming increasingly serious. This article systematically summarizes and analyzes the research progress of thermal contact resistance. It also comparatively analyzes theoretical prediction models, steady-state and transient-state experimental methods and numerical analysis methods from different angles, and summarizes the advantages and disadvantages of different methods. Moreover, the effects of the influencing factors such as the physical properties, the surface state, the contact pressure, the contact temperature, the heat flux direction and the thermal interface materials on the solid–solid thermal contact resistance are also briefly described. Through this systematic comparative analysis, further development directions are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

a :

Radius of actual contact spot (m)

b :

Radius of adnominal contact spot (m)

c :

Specific heat capacity [J/(kg K)]

d :

Mean plane separation (m)

D :

Thickness of specimen (m)

E′:

Equivalent elastic modulus (Pa)

f :

Modulation frequency (Hz)

F :

External force (N)

H :

Bulk hardness (Pa)

H mic :

Microhardness (Pa)

k :

Thermal conductivity [W/(m K)]

L :

Displacement

m :

Effective mean absolute surface slope

n s :

Number of microcontacts

r :

Radius of curvature (m)

Q :

Heat flux (W)

R L :

Macroscopic contraction resistance (m2 K/W)

R S :

Microscopic contraction resistance (m2 K/W)

R a :

Arithmetic mean roughness

T :

Temperature (K)

Y :

Mean surface plane separation (m)

z :

Mean plane separation (m)

α :

Thermal diffusivity (m2/s)

β :

Summits radii of curvature (m)

γ :

Plasticity index

δ :

Height of rough peak (m)

θ :

Angle of the surface asperities (rad)

λ :

Dimensionless surface mean plane separation (λ=Y/σ)

ρ :

Density (kg/m3)

σ :

RMS surface roughness heights (m)

σ′:

Surface roughness (m)

φ :

The phase lag (rad)

ψ :

Effect factor of thermal contact resistance

Φ:

Diameter of sample , m

References

  1. J.A. Greenwood, J.P. Williamson, Contact of nominally flat surfaces. Proc. R. Soc. Lond. A 295(1442), 300–319 (1966)

    ADS  Google Scholar 

  2. M.M. Yovanovich, Four decades of research on thermal contact, gap, and joint resistance in microelectronics. IEEE Trans. Compon. Packag. Technol. 28(2), 182–206 (2005)

    Google Scholar 

  3. M. Lambert, L. Fletcher, Thermal contact conductance of spherical rough metals. J. Heat Transf. 119(4), 684–690 (1997)

    Google Scholar 

  4. P. Kapitza, The study of heat transfer in helium II. J. Phys. (Moscow) 4, 181 (1941)

    Google Scholar 

  5. I. Adamenko, I. Fuks, Roughness and thermal resistance of the boundary between a solid and liquid helium. Sov. Phys. JETP 32, 1123–1129 (1971)

    ADS  Google Scholar 

  6. A. Alnaimi, J. Van der Sluijs, On the experimental reproducibility in measurements of the Kapitza conductance of copper between 1 and 2 K. Cryogenics 13(12), 722–725 (1973)

    ADS  Google Scholar 

  7. W.J. Abbe, A note on the kapitza resistance. Il Nuovo Cimento B (1965–1970) 56(1), 187–189 (1968)

    ADS  Google Scholar 

  8. A.C. Anderson, The Kapitza thermal boundary resistance between two solids, in Nonequilibrium Superconductivity, Phonons, and Kapitza Boundaries (Springer, Boston, 1981), pp. 1–30

  9. M. Lambert, L. Fletcher, Review of models for thermal contact conductance of metals. J. Thermophys. Heat Trans. 11(2), 129–140 (1997)

    Google Scholar 

  10. M. Lambert, L. Fletcher, Thermal contact conductance of non-flat, rough, metallic coated metals. J. Heat Transf. 124(3), 405–412 (2002)

    Google Scholar 

  11. A. Wang, J. Zhao, Review of prediction for thermal contact resistance. Sci. China Technol. Sci. 53(7), 1798–1808 (2010)

    ADS  Google Scholar 

  12. Y. Hong, J. Zhang, X.C. Zeng, Thermal contact resistance across a linear heterojunction within hybrid graphene/hexagonal boron nitride hheet. Phys. Chem. Chem. Phys. 18(35), 24164 (2016)

    Google Scholar 

  13. Z.F. Liu, C.Y. Ma, Y.S. Zhao et al., Analysis of high speed motorized spindle thermal char-acteristics based on thermal contact resistance. J. Beijing Univ. Technol. 42(1), 17–23 (2016). (in chinese)

    Google Scholar 

  14. M. Ge, L.J. Zhao, S.X. Shu et al., Impact of thermal contact resistance on heat transfer coefficient of double H-type finned tubes. Electric Power 50(2), 57 (2017). (in chinese)

    Google Scholar 

  15. X.W. Wang, P. Hu, Y. Liu, Study on experimental device and measurements for interface thermal resistance of adhesive structure of CFRP. J. Univ. Sci. Technol. China 48(7), 600 (2018). (in chinese)

    Google Scholar 

  16. C.H. Wang, J. Zhou, X.Y. Zhang, The research on thermal contact resistance and contact resistance of solid at low temperature. Cryog. Supercond. 46(3), 1 (2018). (in chinese)

    Google Scholar 

  17. L.K. Fletcher, Review of thermal control materials for metallic junctions. J. Spacecr. Rockets 9(12), 849–850 (1972)

    ADS  Google Scholar 

  18. L.S. Fletcher, A review of thermal enhancement techniques for electronic systems. IEEE Trans. Compon. Hybrids Manuf. Technol. 13(4), 1012–1021 (1990)

    MathSciNet  Google Scholar 

  19. J. Maddren, E. Marschall, Predicting thermal contact resistance at cryogenic temperatures for spacecraft applications. J. Spacecr. Rockets 32(3), 469–474 (1995)

    ADS  Google Scholar 

  20. L.Y. Sun, C.L. Meng, J. Wang et al., Experimental study of the thermal contact resistance of materials commonly used in satellites under vacuum and low temperature. J. Beijing Univ. Chem. Technol. (Nat. Sci. Ed. 46(4), 54–57 (2019). (in chinese)

    Google Scholar 

  21. M. Bahrami, Modeling of thermal joint resistance for sphere-flat contacts in a vacuum (2004)

  22. P.P.S.S. Abadi, C.K. Leong, D.D.L. Chung, Factors that govern the performance of thermal interface materials. J. Electron. Mater. 38(1), 175 (2009)

    ADS  Google Scholar 

  23. J.J. Gou, X.J. Ren, Y.J. Dai et al., Study of thermal contact resistance of rough surfaces based on the practical topography. Comput. Fluids 164, 2–11 (2018)

    MathSciNet  MATH  Google Scholar 

  24. N.N. Verma, S. Mazumder, Extraction of thermal contact conductance of metal–metal contacts from scale-resolved direct numerical simulation. Int. J. Heat Mass Transf. 94, 164–173 (2016)

    Google Scholar 

  25. M. Bahrami, J.R. Culham, M.M. Yovanovich, G.E. Schneider, Thermal contact resistance of nonconforming rough surfaces, part 1: contact mechanics model. J. Thermophys. Heat Trans. 18(2), 209–217 (2004)

    Google Scholar 

  26. M. Bahrami, J.R. Culham, M.M. Yovanovich, G.E. Schneider, Thermal contact resistance of nonconforming rough surfaces, part 2: thermal model. J. Thermophys. Heat Trans. 18(2), 218–227 (2004)

    Google Scholar 

  27. A.M. Clausing, B.T. Chao, Thermal contact resistance in a vacuum environment. ASME J. Heat Transf. 87(2), 243 (1965)

    Google Scholar 

  28. M.M. Yovanovich, Overall constriction resistance between contacting rough, wavy surfaces. Int. J. Heat Mass Transf. 12(11), 1517–1520 (1969)

    Google Scholar 

  29. S.S. Burde, Thermal contact resistance between smooth spheres and rough flats (1978)

  30. K. Nishino, S. Yamashita, K. Torii, Thermal contact conductance under low applied load in a vacuum environment. Exp. Therm. Fluid Sci. 10(2), 258–271 (1995)

    Google Scholar 

  31. C. Lander, Communications on a review of recent progress in heat transfer. Proc. Inst. Mech. Eng. 149(1), 126–132 (1943)

    Google Scholar 

  32. E.T. Swartz, R.O. Pohl, Thermal boundary resistance. Rev. Mod. Phys. 61(3), 605 (1989)

    ADS  Google Scholar 

  33. M.M. Yovanovich, Conduction and thermal contact resistances (conductances). Handb. Heat Transf. 3(3), 34–35 (1998)

    Google Scholar 

  34. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Clarendon Press, Oxford, 1959)

    MATH  Google Scholar 

  35. H. Fenech, W. Rohsenow, Prediction of thermal conductance of metallic surfaces in contact. J. Heat Transf. 85(1), 15–24 (1963)

    Google Scholar 

  36. R.D. Gibson, The contact resistance for a semi-infinite cylinder in a vacuum. Appl. Energy 2(1), 57–65 (1976)

    MathSciNet  Google Scholar 

  37. M. Cooper, B. Mikic, M. Yovanovich, Thermal contact conductance. Int. J. Heat Mass Transf. 12(3), 279–300 (1969)

    Google Scholar 

  38. L. Roess, Theory of Spreading Conductance (Beacon Laboratories of Texas, Beacon, 1950). (Appendix A unpublished paper)

    Google Scholar 

  39. B.W. Mikic, MI ROHSENOW, Thermal Contact Resistance. MIT Reo (1966)

  40. K.J. Negus, M.M. Yovanovich, Application of the method of optimized images to steady three-dimensional conduction problems, in ASME Annual Meeting, New Orleans, LA, ASME Paper (1984) (84-WA), pp. 1–11

  41. J.A. Greenwood, J.H. Tripp, The elastic contact of rough spheres. J. Appl. Mech. 34(1), 153 (1967)

    ADS  Google Scholar 

  42. M. Bahrami, M.M. Yovanovich, J.R. Culham, A compact model for spherical rough contacts, in ASME/STLE 2004 International Joint Tribology Conference (American Society of Mechanical Engineers, 2004), pp. 1147–1156

  43. A. Williams, Heat flux through single point of metallic contacts of simple shapes. AIAA Prog. Astronacit Aeronaut. 1975(39), 129 (1975)

    Google Scholar 

  44. M. Santo, I. Shai, Heat Transfer of Contact Resistance. Israel Atomic Energy Commission (1979)

  45. I. Shai, M. Santo, Heat transfer with contact resistance. Int. J. Heat Mass Transf. 25(4), 465–470 (1982)

    Google Scholar 

  46. M.R. Sridhar, M.M. Yovanovich, Review of elastic and plastic contact conductance models-comparison with experiment. J. Thermophys. Heat Trans. 8(4), 633–640 (1994)

    Google Scholar 

  47. S.S. Kumar, K. Ramamurthi, Prediction of thermal contact conductance in vacuum using Monte Carlo simulation. J. Thermophys. Heat Trans. 15(1), 27–33 (2001)

    Google Scholar 

  48. Z. Ming, X.C. Shu et al., Monte-Carlo simulation for thermal resistance of contact surface. Chin. J. High Press. Phys. 16(4), 305–308 (2002). (in chinese)

    Google Scholar 

  49. H. Zahouani, R. Vargiolu, J.L. Loubet, Fractal models of surface topography and contact mechanics. Math. Comput. Model. 28(4–8), 517–534 (1998)

    MATH  Google Scholar 

  50. V. Singhai, S.V. Garimella, Prediction of thermal contact conductance by surface deformation analysis. ASME Publ. HTD 369, 43–50 (2001)

    Google Scholar 

  51. R. Xu, H. Feng, L. Zhao et al., Experimental investigation of thermal contact conductance at low temperature based on fractal description. Int. Commun. Heat Mass Transf. 33(7), 811–818 (2006)

    Google Scholar 

  52. P.M. Norris, P.E. Hopkins, Examining interfacial diffuse phonon scattering through transient thermoreflectance measurements of thermal boundary conductance. J. Heat Transf. 131(4), 043207 (2009)

    Google Scholar 

  53. W.A. Little, The transport of heat between dissimilar solids at low temperatures. Can. J. Phys. 37(3), 334–349 (1959)

    ADS  Google Scholar 

  54. L.M.A Pascal, A. Fay, C.B. Winkelmann et al., Existence of an independent phonon bath in a quantum device[J]. Phys. Rev. B. 88(10), 100502 (2013)

  55. L.B. Wang, O.-P. Saira, D.S. Golubev, J.P. Pekola, Crossover between electron-phonon and boundary resistance limited thermal relaxation in copper films. Phys. Rev. Appl. 12, 024051 (2019)

    ADS  Google Scholar 

  56. R.S. Prasher, P.E. Phelan, A scattering-mediated acoustic mismatch model for the prediction of thermal boundary resistance. J. Heat Transf. 123(1), 105–112 (2000)

    Google Scholar 

  57. A. Majumdar, Microscale heat conduction in dielectric thin films. J. Heat Transf. 115(1), 7 (1993)

    ADS  Google Scholar 

  58. P.E. Hopkins, P.M. Norris, Effects of joint vibrational states on thermal boundary conductance. Nanoscale Microsc. Thermophys. Eng. 11(3–4), 247–257 (2007)

    ADS  Google Scholar 

  59. T. Beechem, S. Graham, P. Hopkins, P. Norris, Role of interface disorder on thermal boundary conductance using a virtual crystal approach. Appl. Phys. Lett. 90(5), 054104 (2007)

    ADS  Google Scholar 

  60. S. Deng, C. Xiao, J. Yuan, D. Ma, J. Li, N. Yang et al., Thermal boundary resistance measurement and analysis across SiC/SiO2 interface. arXiv preprint arXiv. 2019;1905,08570

  61. G. Chen, Phonon wave heat conduction in thin films and superlattices (1999)

  62. G. Chen, Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures (1997)

  63. T. Cui, Q. Li, Y. Xuan, P. Zhang, Multiscale simulation of thermal contact resistance in electronic packaging. Int. J. Therm. Sci. 83, 16–24 (2014)

    Google Scholar 

  64. O. El Mhamdi, S. Elalami, Solving heat transfer problems with thermal contact resistance using the lattice Boltzmann method, in 2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS) (IEEE, 2017), pp. 1–6

  65. J.A. Greenwood, The area of contact between rough surfaces and flats (1967)

  66. P.R. Nayak, Random process model of rough surfaces. Wear 93(3), 398–407 (1971)

    Google Scholar 

  67. P.R. Nayak, Some aspects of surface roughness measurement. Wear 26(2), 165–174 (1973)

    Google Scholar 

  68. P. Nayak, Random process model of rough surfaces in plastic contact. Wear 26(3), 305–333 (1973)

    Google Scholar 

  69. J.A. Greenwood, J.J. Wu, Surface roughness and contact: an apology. Meccanica 36(6), 617–630 (2001)

    MATH  Google Scholar 

  70. M.S. Longuet-Higgins, The statistical geometry of random surfaces (1962), pp. 105–143

  71. A.A. Polycarpou, I. Etsion, Analytical approximations in modeling contacting rough surfaces. J. Tribol. 121(2), 234–239 (1999)

    Google Scholar 

  72. R.S. Sayles, T.R. Thomas, Thermal conductance of a rough elastic contact. Appl. Energy 2(4), 249–267 (1976)

    Google Scholar 

  73. A. Bush, R. Gibson, T. Thomas, The elastic contact of a rough surface. Wear 35(1), 87–111 (1975)

    Google Scholar 

  74. M. O’Callaghan, M. Cameron, Static contact under load between nominally flat surfaces in which deformation is purely elastic. Wear 36(1), 79–97 (1976)

    Google Scholar 

  75. A. Bush, R. Gibson, G. Keogh, Strongly anisotropic rough surfaces (1979)

  76. J.I. Mccool, Comparison of models for the contact of rough surfaces. Wear 107(1), 37–60 (1986)

    Google Scholar 

  77. R.S. Sayles, T.R. Thomas, Surface topography as a nonstationary random process. Nature 271(5644), 431 (1978)

    ADS  Google Scholar 

  78. B.B. Mandelbrot, Fractals: Form, Chance, and Dimension (WH Freeman, San Francisco, 1977)

    MATH  Google Scholar 

  79. A. Majumdar, B. Bhushan, Role of fractal geometry in roughness characterization and contact mechanics of surfaces. J. Tribol. 112(2), 205–216 (1990)

    Google Scholar 

  80. A. Majumdar, B. Bhushan, Fractal model of elastic-plastic contact between rough surfaces. J. Tribol. 113(1), 1–11 (1991)

    Google Scholar 

  81. A. Majumdar, C. Tien, Fractal network model for contact conductance. J. Heat Transf. 113(3), 516–525 (1991)

    Google Scholar 

  82. M.G. Blyth, C. Pozrikidis, Heat conduction across irregular and fractal-like surfaces. Int. J. Heat Mass Transf. 46(8), 1329–1339 (2003)

    MATH  Google Scholar 

  83. L.P. Zhao, X.U. Lie, Fractal model including constriction resistance for thermal contact conductance. J. Tongji Univ. 31(3), 296–299 (2003)

    Google Scholar 

  84. R.P. Xu, L. Xu, L.P. Zhao, Fractal description of thermal contact resistance between rough surfaces. J. Shanghai Jiaotong Univ. 38(10), 1609–1612 (2004)

    Google Scholar 

  85. A.L. Wang, C.X. Yang, X.G. Yuan, Evaluation of the wavelet transform method for machined surface topography I: methodology validation. Tribol. Int. 36(7), 517–526 (2003)

    Google Scholar 

  86. A.L. Wang, C.X. Yang, X.G. Yuan, Evaluation of the wavelet transform method for machined surface topography 2: fractal characteristic analysis. Tribol. Int. 36(7), 527–535 (2003)

    Google Scholar 

  87. M. Bahrami, J.R. Culham, M.M. Yovanovich et al., Review of thermal joint resistance models for non-conforming rough surfaces in a vacuum, in ASME 2003 Heat Transfer Summer Conference (American Society of Mechanical Engineers, 2003), pp. 411–431

  88. B. Persson, Sliding friction, physical principles and applications. Int. J. Numer. Anal. Methods Geomech. 24(1), 95–96 (2000)

    MATH  Google Scholar 

  89. A.A.-H. Hegazy, Thermal joint conductance of conforming rough surfaces: effect of surface micro-hardness variation (2016)

  90. G.M. Gladwell, Contact Problems in the Classical Theory of Elasticity (Springer, Berlin, 1980)

    MATH  Google Scholar 

  91. J. Archard, Single contacts and multiple encounters. J. Appl. Phys. 32(8), 1420–1425 (1961)

    ADS  Google Scholar 

  92. E. Abbot, F. Firestone, Specifying surface quality. Mech. Eng. 55(9), 569–572 (1933)

    Google Scholar 

  93. T. Tsukizoe, T. Hisakado, On the mechanism of contact between metal surfaces—the penetrating depth and the average clearance (1965)

  94. T. Tsukizoe, T. Hisakado, On the mechanism of contact between metal surfaces: part 2—the real area and the number of the contact points (1968)

  95. M.M. Yovanovich, Thermal contact correlations. AIAA Pap. 81, 83–95 (1982)

    Google Scholar 

  96. J.F. Archard, Contact and rubbing of flat surfaces. J. Appl. Phys. 24(8), 981–988 (1953)

    ADS  Google Scholar 

  97. J.A. Greenwood, J. Tripp, The contact of two nominally flat rough surfaces. Proc. Inst. Mech. Eng. 185(1), 625–633 (1970)

    Google Scholar 

  98. B. Mikić, Thermal contact conductance; theoretical considerations. Int. J. Heat Mass Transf. 17(2), 205–214 (1974)

    Google Scholar 

  99. S.P. Timoshenko, J.M. Goodier, Theory of Elasticity (1951)

  100. M. Sridhar, M. Yovanovich, Elastoplastic contact conductance model for isotropic conforming rough surfaces and comparison with experiments. J. Heat Transf. 118(1), 3–9 (1996)

    Google Scholar 

  101. W. Chang, I. Etsion, D.B. Bogy, An elastic-plastic model for the contact of rough surfaces. J. Tribol. 109(2), 257–263 (1987)

    Google Scholar 

  102. Y. Zhao, D.M. Maietta, L. Chang, An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. J. Trib. 122(1), 86–93 (1999)

    Google Scholar 

  103. S. Sunil Kumar, K. Ramamurthi, Influence of flatness and waviness of rough surfaces on surface contact conductance. J. Heat Transf. 125(3), 394–402 (2003)

    Google Scholar 

  104. D. Liu, Y. Luo, X. Shang, Experimental investigation of high temperature thermal contact resistance between high thermal conductivity C/C material and Inconel 600. Int. J. Heat Mass Transf. 80, 407–410 (2015)

    Google Scholar 

  105. T. Hatakeyama, R. Kibushi, M. Ishizuka et al., Fundamental study of surface roughness dependence of thermal and electrical contact resistance, in 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (IEEE, 2016), pp. 1078–1082

  106. B. Snaith, S. Probert, P. O’Callaghan, Thermal resistances of pressed contacts. Appl. Energy 22(1), 31–84 (1986)

    Google Scholar 

  107. S. Song, M.M. Yovanovich, Relative contact pressure-Dependence on surface roughness and Vickers microhardness. J. Thermophys. Heat Trans. 2(1), 43–47 (1988)

    Google Scholar 

  108. L.J. Salerno, P. Kittel, A.L. Spivak, Thermal conductance of pressed metallic contacts augmented with indium foil or Apiezon grease at liquid helium temperatures. Cryogenics 34(8), 649–654 (1994)

    ADS  Google Scholar 

  109. E. Gmelin, M. Asen-Palmer, M. Reuther et al., Thermal boundary resistance of mechanical contacts between solids at sub-ambient temperatures. J. Phys. D Appl. Phys. 32(6), R19 (1999)

    ADS  Google Scholar 

  110. Astm A. D5470-06: standard test method for thermal transmission properties of thermally conductive electrical insulation materials. Book of Standards (2006), p. 10

  111. H.L. Zhao, Y.M. Huang, J.L. Xu et al., Experiment research on thermal contact resistance of Normal used joints. J. Xi’ an Univ. Technol. 15(3), 26–29 (1999). (in chinese)

    Google Scholar 

  112. G. Zhang, C. Liu, S. Fan, Temperature dependence of thermal boundary resistances between multiwalled carbon nanotubes and some typical counterpart materials. ACS Nano 6(4), 3057–3062 (2012)

    Google Scholar 

  113. J. Ying, Y. Jia, Z.C. Chen et al., Theoretical and experimental research on the contact thermal resistance between real surface. J. Zhejiang Univ. (Nat. Sci.) 31(1), 104–109 (1997). (in chinese)

    Google Scholar 

  114. K. Azuma, T. Hatakeyama, S. Nakagawa, Measurement of surface roughness dependence of thermal contact resistance under low pressure condition, in 2015 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC) (IEEE, 2015), pp. 381–384

  115. P. Zhang, T. Cui, Q. Li, Effect of surface roughness on thermal contact resistance of aluminium alloy. Appl. Therm. Eng. 121, 992–998 (2017)

    Google Scholar 

  116. L. Xu, T. Zhang, L.P. Zhao, Using double heat-flux meter method to measure the thermal contact resistance of solid material at low temperature and vacuum. Cryogenics 4, 185–189 (1999)

    Google Scholar 

  117. R. Rao, J. Wang, H. Zhuang, T. Wang, J. Chen, J. Li et al., An investigation on interface thermal resistance at superconductor cooling by cryocooler. Phys. C 386, 547–550 (2003)

    ADS  Google Scholar 

  118. S.S. Kumar, K. Ramamurthi, Thermal contact conductance of pressed contacts at low temperatures. Cryogenics 44(10), 727–734 (2004)

    ADS  Google Scholar 

  119. T. McWaid, E. Marschall, Thermal contact resistance across pressed metal contacts in a vacuum environment. Int. J. Heat Mass Transf. 35(11), 2911–2920 (1992)

    Google Scholar 

  120. C. Fieberg, R. Kneer, Determination of thermal contact resistance from transient temperature measurements. Int. J. Heat Mass Transf. 51(5–6), 1017–1023 (2008)

    MATH  Google Scholar 

  121. A.L. Wang, S.Y. Ma, A new method for measuring the thermal contact resistance between plate. J. Eng. Thermophys. 38(11), 119–124 (2017). (in chinese)

    Google Scholar 

  122. S. Woodland, A.D. Crocombe, J.W. Chew, S.J. Mills, A new method for measuring thermal contact conductance—experimental technique and results. J. Eng. Gas Turbines Power 133(7), 071601 (2011)

    Google Scholar 

  123. T. Log, S.E. Gustafsson, Transient plane source (TPS) technique for measuring thermal transport properties of building materials. Fire Mater. 19(1), 43–49 (1995)

    Google Scholar 

  124. E. Wolff, D. Schneider, Prediction of thermal contact resistance between polished surfaces. Int. J. Heat Mass Transf. 41(22), 3469–3482 (1998)

    Google Scholar 

  125. N. Milošević, M. Raynaud, K. Maglić, Estimation of thermal contact resistance between the materials of double-layer sample using the laser flash method. Inverse Probl. Eng. 10(1), 85–103 (2002)

    Google Scholar 

  126. S. Malinari, Parameter estimation in dynamic plane source method. Meas. Sci. Technol. 15(5), 807–813 (2004)

    ADS  Google Scholar 

  127. A. Salazar, A. Sánchez-Lavega, Thermal diffusivity measurements using linear relations from photothermal wave experiments. Rev. Sci. Instrum. 65(9), 2896–2900 (1994)

    ADS  Google Scholar 

  128. B. Li, L. Pottier, J.P. Roger et al., Thermal characterization of film-on-substrate systems with modulated thermoreflectance microscopy. Rev. Sci. Instrum. 71(5), 2154–2160 (2000)

    ADS  Google Scholar 

  129. Y.G. Gurevich, G.N. Logvinov, G.G.D.L. Cruz, G.E. López, Physics of thermal waves in homogeneous and inhomogeneous (two-layer) samples. Int. J. Therm. Sci. 42(1), 63–69 (2003)

    Google Scholar 

  130. O. Kwon, L. Shi, A. Majumdar, Scanning thermal wave microscopy (STWM). Trans. Am. Soc. Mech. Eng. J. Heat Transf. 125(1), 156–163 (2003)

    Google Scholar 

  131. Y. Fujii, A. Moritani, J. Nakai, Photoacoustic spectroscopy theory for multi-layered samples and interference effect. Jpn. J. Appl. Phys. 20(2), 361 (1981)

    ADS  Google Scholar 

  132. J. Baumann, R. Tilgner, Determining photothermally the thickness of a buried layer. J. Appl. Phys. 58(5), 1982–1985 (1985)

    ADS  Google Scholar 

  133. S. Sankara Raman, V.P.N. Nampoori, C.P.G. Vallabhan et al., Photoacoustic study of the effect of degassing temperature on thermal diffusivity of hydroxyl loaded alumina. Appl. Phys. Lett. 67(20), 2939–2941 (1995)

    ADS  Google Scholar 

  134. J.A. Balderas-López, A. Mandelis, Self-normalized photothermal techniques for thermal diffusivity measurements. J. Appl. Phys. 88(11), 6815–6820 (2000)

    ADS  Google Scholar 

  135. K.B. Larson, K. Koyama, Measurement by the flash method of thermal diffusivity, heart capacity, and thermal conductivity in two-layer composite samples. J. Appl. Phys. 39(9), 4408–4416 (1968)

    ADS  Google Scholar 

  136. S.F. Corbin, D.M. Turriff. Thermal diffusivity by the laser flash technique. Charact. Mater. 1–10 (2002)

  137. L. Vozár, W. Hohenauer, Flash method of measuring the thermal diffusivity. A review. High Temp. High Press. 36(3), 253–264 (2004)

    MATH  Google Scholar 

  138. V. Casalegno, P. Vavassori, M. Valle, M. Ferraris, M. Salvo, G. Pintsuk, Measurement of thermal properties of a ceramic/metal joint by laser flash method. J. Nucl. Mater. 407(2), 83–87 (2010)

    ADS  Google Scholar 

  139. C.L. Niliot, P. Gallet, Infrared thermography applied to the resolution of inverse heat conduction problems: recovery of heat line sources and boundary conditions. Revue générale de Thermique 37(8), 629–643 (1998)

    Google Scholar 

  140. Z.M. Zhou, Z.X. Zhu et al., Thermal physical property of refractory material measured by plane heat source method with constant heat rate. J Cent South Univ 42(05), 1467–1472 (2011). (in chinese)

    Google Scholar 

  141. P. Cui, Z.H. Fang, Improvement on the plane-source method with constant heating rate on the boundary. J. Shandong Jianzhu Univ. 02, 48–52 (2001). (in chinese)

    Google Scholar 

  142. B.X. Wang, L.Z. Han et al., A plane heat source method for simultaneous measurement of the thermal diffusivity α and conductivity λ of insulating materials with constant heat rate. J. Eng. Thermophys. 1(1), 80–87 (1980). (in chinese)

    Google Scholar 

  143. J. Pelzl, S. Chotikaprakhan, D. Dietzel et al., The thermal contact problem in nano- and micro-scale photothermal measurements. Eur. Phys. J. Spec. Top. 153(1), 335–342 (2008)

    Google Scholar 

  144. D.A. Young, C. Thomsen, H.T. Grahn et al., Heat flow in glasses on a picosecond timescale, in Phonon Scattering in Condensed Matter V. Springer, Berlin (1986), pp. 49–51

  145. D.G. Cahill, Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev. Sci. Instrum. 61(2), 802–808 (1990)

    ADS  Google Scholar 

  146. S.-M. Lee, D.G. Cahill, Heat transport in thin dielectric films. J. Appl. Phys. 81(6), 2590–2595 (1997)

    ADS  Google Scholar 

  147. D. Bi, H. Chen, T. Ye, Influences of temperature and contact pressure on thermal contact resistance at interfaces at cryogenic temperatures. Cryogenics 52(7–9), 403–409 (2012)

    ADS  Google Scholar 

  148. V. Suarez, J.H. Wong, U. Nogal et al., Study of the heat transfer in solids using infrared photothermal radiometry and simulation by COMSOL multiphysics. Appl. Radiat. Isot. 83, 260–263 (2014)

    Google Scholar 

  149. A. Lahmar, T.P. Nguyen, D. Sakami et al., Experimental investigation on the thermal contact resistance between gold coating and ceramic substrates. Thin Solid Films 389(1–2), 167–172 (2001)

    ADS  Google Scholar 

  150. W.F. Bu, D.W. Tang, Z.L. Wang et al., Modulated photothermal reflectance technique for measuring thermal conductivity of nano film on substrate and thermal boundary resistance. Thin Solid Films 516(23), 8359–8362 (2008)

    ADS  Google Scholar 

  151. D. Bi, H. Chen, S. Liu, L. Shen, Measurement of thermal diffusivity/thermal contact resistance using laser photothermal method at cryogenic temperatures. Appl. Therm. Eng. 111, 768–775 (2016)

    Google Scholar 

  152. A. Rosencwaig, A. Gersho, Theory of the photoacoustic effect with solids. J. Appl. Phys. 47(1), 64–69 (1976)

    ADS  Google Scholar 

  153. J.L. Pichardo, J.J. Alvarado-Gil, Open photoacoustic cell determination of the thermal interface resistance in two layer systems. J. Appl. Phys. 89(7), 4070–4075 (2001)

    ADS  Google Scholar 

  154. W.J. Parker, R.J. Jenkins, C.P. Butler et al., Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32(9), 1679–1684 (1961)

    ADS  Google Scholar 

  155. M. Laurent, J. Macqueron, A. Gery, G. Sinicki, Thermodynamique: la méthode du signal bref appliquée à la mesure des résistances thermiques de contact. CRAS Paris B. 273, 1369–1371 (1967)

    Google Scholar 

  156. A. Degiovanni, A. Gery, M. Laurent, J.-L. Macqueron, G. Sinicki, Transient response of surface-temperature detectors. C. R. Hebd. Seances Acad. Sci. 280(13), 393–395 (1975)

    Google Scholar 

  157. J.G. Bai, Z.Z. Zhang, G.Q. Lu et al., Measurement of solder/copper interfacial thermal resistance by the flash technique. Int. J. Thermophys. 26(5), 1607–1615 (2005)

    ADS  Google Scholar 

  158. S.F. Corbin, D.M. Turriff, M. Kozdras, S. Winkler, In situ measurement of the thermal contact resistance of an al lap joint during braze processing. Metall. Mater. Trans. A 45(2), 835–842 (2014)

    Google Scholar 

  159. N.D. Milošević, Determination of transient thermal interface resistance between two bonded metal bodies using the laser-flash method. Int. J. Thermophys. 29(6), 2072–2087 (2008)

    ADS  Google Scholar 

  160. V. Khuu, M. Osterman, A. Bar-Cohen et al., Thermal performance measurements of thermal interface materials using the laser flash method, in ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference (American Society of Mechanical Engineers Digital Collection, 2007), pp. 405–414

  161. A. El-Sabbagh, C. Fieberg, E. El-Magd, R. Kneer, Modeling of transient thermal contact resistance out of conjugate gradient method. Materialwissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prüfung, Eigenschaften und Anwendungen technischer Werkstoffe. 38(4), 288–293 (2007)

    Google Scholar 

  162. E. Burghold, Y. Frekers, R. Kneer, Determination of time-dependent thermal contact conductance through IR-thermography. Int. J. Therm. Sci. 98, 148–155 (2015)

    Google Scholar 

  163. B.X. Wang, Z.L. Ren, Z.H. Fang, Measuring technology and error analysis on the measurement of thermal conductivity using two-plane thermal conductivity instrument. J. Eng. Thermophys. 3(1), 1–2 (1982)

    Google Scholar 

  164. C. Liu, H. Huang, Y. Wu, S. Fan, Thermal conductivity improvement of silicone elastomer with carbon nanotube loading. Appl. Phys. Lett. 84(21), 4248–4250 (2004)

    ADS  Google Scholar 

  165. R.J. Stevens, A.N. Smith, P.M. Norris, Signal analysis and characterization of experimental setup for the transient thermoreflectance technique. Rev. Sci. Instrum. 77(8), 084901 (2006)

    ADS  Google Scholar 

  166. P.E. Hopkins, P.M. Norris, R.J. Stevens, T.E. Beechem, S. Graham, Influence of interfacial mixing on thermal boundary conductance across a chromium/silicon interface. J. Heat Transf. 130(6), 062402 (2008)

    Google Scholar 

  167. C.A. Paddock, G.L. Eesley, Transient thermoreflectance from thin metal films. J. Appl. Phys. 60(1), 285–290 (1986)

    ADS  Google Scholar 

  168. R. Stoner, H. Maris, Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. Phys. Rev. B. 48(22), 16373 (1993)

    ADS  Google Scholar 

  169. J. Hostetler, A. Smith, P. Norris, Thin-film thermal conductivity and thickness measurements using picosecond ultrasonics. Microsc. Thermophys. Eng. 1(3), 237–244 (1997)

    Google Scholar 

  170. M.A. Panzer, G. Zhang, D. Mann et al., Thermal properties of metal-coated vertically aligned single-wall nanotube arrays. J. Heat Transf. 130(5), 052401 (2008)

    Google Scholar 

  171. S. Kudo, H. Hagino, S. Tanaka, K. Miyazaki, M. Takashiri, Determining the thermal conductivity of nanocrystalline bismuth telluride thin films using the differential 3ω method while accounting for thermal contact resistance. J. Electron. Mater. 44(6), 2021–2025 (2015)

    ADS  Google Scholar 

  172. J. Sarthou, J.Y. Duquesne, L. Becerra, P. Gredin, M. Mortier, Thermal conductivity measurements of Yb:CaF 2 transparent ceramics using the 3 ω method. J. Appl. Phys. 121(24), 245108 (2017)

    ADS  Google Scholar 

  173. Z. Chen, W. Jang, W. Bao, C. Lau, C. Dames, Thermal contact resistance between graphene and silicon dioxide. Appl. Phys. Lett. 95(16), 161910 (2009)

    ADS  Google Scholar 

  174. Z. Wang, M. Sun, G. Yao, D. Tang, K. Xu, Reconstruction of thermal boundary resistance and intrinsic thermal conductivity of SiO2-GaN-sapphire structure and temperature dependence. Int. J. Therm. Sci. 87, 178–186 (2015)

    Google Scholar 

  175. J.-S. Heron, G.M. Souche, F.R. Ong, P. Gandit, T. Fournier, O. Bourgeois, Temperature modulation measurements of the thermal properties of nanosystems at low temperatures. J. Low Temp. Phys. 154(5–6), 150–160 (2009)

    ADS  Google Scholar 

  176. Y. Ohsone, G. Wu, J. Dryden et al., Optical measurement of thermal contact conductance between wafer-like thin solid samples. ASME 121, 954–963 (1999)

    Google Scholar 

  177. Y. Ohsone, Optical measurement of thermal contact conductance between thin, waferlike solid samples by using laser AC heating and reflectance thermometry: reconsideration of the loading method for the samples. Heat Transfer Asian Research Co-sponsored by the Society of Chemical Engineers of Japan and the Heat Transfer Division of ASME 31(6), 498–512 (2002)

    Google Scholar 

  178. X. Wang, H. Hu, X. Xu, Photo-acoustic measurement of thermal conductivity of thin films and bulk materials. J. Heat Transf. 123(1), 138–144 (2000)

    Google Scholar 

  179. A.N. Smith, J.L. Hostetler, P.M. Norris, Thermal boundary resistance measurements using a transient thermoreflectance technique. Microsc. Thermophys. Eng. 4(1), 51–60 (2000)

    Google Scholar 

  180. L. He, Application of the 3-Omega Method on Measuring the Interfacial Thermal Resistance in Thin Films (University of Electronic Science and Technology of China, Chenghua, 2016). (in chinese)

    Google Scholar 

  181. A. Colin, Thermal contact resistance of different materials between 0.3 K and 4.5 K. Cryogenics 48(1–2), 83–85 (2008)

    ADS  Google Scholar 

  182. J. Wang, B. Song, M. Gu, X. Zhang, Temperature dependence of thermal resistance of a bare joint. Int. J. Heat Mass Transf. 53(23–24), 5350–5354 (2010)

    MATH  Google Scholar 

  183. M. Shojaefard, K. Goudarzi, The numerical estimation of thermal contact resistance in contacting surfaces. Am. J. Appl. Sci 5(11), 1566–1571 (2008)

    Google Scholar 

  184. V. Eremenko, V. Sirenko, V. Ibulaev, J. Bartolomé, A. Arauzo, G. Reményi, Heat capacity, thermal expansion and pressure derivative of critical temperature at the superconducting and charge density wave (CDW) transitions in NbSe2. Phys. C 469(7–8), 259–264 (2009)

    ADS  Google Scholar 

  185. P. Cong, X. Zhang, M. Fujii, Estimation of thermal contact resistance using ultrasonic waves. Int. J. Thermophys. 27(1), 171–183 (2006)

    ADS  Google Scholar 

  186. A.R. Warrier, K. Deepa, T. Sebastian, C.S. Kartha, K. Vijayakumar, Non-destructive evaluation of carrier transport properties in CuInS2 and CuInSe2 thin films using photothermal deflection technique. Thin Solid Films 518(7), 1767–1773 (2010)

    ADS  Google Scholar 

  187. F. Agresti, A. Ferrario, S. Boldrini, A. Miozzo, F. Montagner, S. Barison et al., Temperature controlled photoacoustic device for thermal diffusivity measurements of liquids and nanofluids. Thermochim. Acta 619, 48–52 (2015)

    Google Scholar 

  188. X. Li, Y. Yan, L. Dong, J. Guo, A. Aiyiti, X. Xu et al., Thermal conduction across a boron nitride and SiO2 interface. J. Phys. D Appl. Phys. 50(10), 104002 (2017)

    ADS  Google Scholar 

  189. J. Cho, Thermal properties of anisotropic and/or inhomogeneous suspended thin films assessed via dual-side time-domain thermoreflectance: a numerical study. Nanoscale Microsc. Thermophys. Eng. 22(1), 6–20 (2018)

    ADS  Google Scholar 

  190. J. Zhu, X. Wu, D.M. Lattery, W. Zheng, X. Wang, The ultrafast laser pump-probe technique for thermal characterization of materials with micro/nanostructures. Nanoscale Microsc. Thermophys. Eng. 21(3), 177–198 (2017)

    ADS  Google Scholar 

  191. M. Ausloos, D. Berman, A multivariate Weierstrass–Mandelbrot function. Proc. R. Soc. Lond. A Math. Phys. Sci. 1985(400), 331–350 (1819)

    MATH  Google Scholar 

  192. S. Pettersson, G. Mahan, Theory of the thermal boundary resistance between dissimilar lattices. Phys. Rev. B 42(12), 7386 (1990)

    ADS  Google Scholar 

  193. E. Landry, A. McGaughey, Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations. Phys. Rev. B. 80(16), 165304 (2009)

    ADS  Google Scholar 

  194. M. Leung, C. Hsieh, D. Goswami, Prediction of thermal contact conductance in vacuum by statistical mechanics. J. Heat Transf. 120(1), 51–57 (1998)

    Google Scholar 

  195. N. Laraqi, A. Bairi, New models of thermal resistance at the interface of solids connected by random disk contacts. C. R. Mec. 330(1), 39–43 (2002)

    ADS  MATH  Google Scholar 

  196. N. Laraqi, A. Bairi, Theory of thermal resistance between solids with randomly sized and located contacts. Int. J. Heat Mass Transf. 45(20), 4175–4180 (2002)

    MATH  Google Scholar 

  197. K. Han, Y. Feng, D. Owen, Modelling of thermal contact resistance within the framework of the thermal lattice Boltzmann method. Int. J. Therm. Sci. 47(10), 1276–1283 (2008)

    Google Scholar 

  198. A.J. Ladd, B. Moran, W.G. Hoover, Lattice thermal conductivity: a comparison of molecular dynamics and anharmonic lattice dynamics. Phys. Rev. B 34(8), 5058 (1986)

    ADS  Google Scholar 

  199. X. Zhou, S. Aubry, R. Jones, A. Greenstein, P. Schelling, Towards more accurate molecular dynamics calculation of thermal conductivity: Case study of GaN bulk crystals. Phys. Rev. B 79(11), 115201 (2009)

    ADS  Google Scholar 

  200. A. Rostami, A. Hassan, P. Lim, Parametric study of thermal constriction resistance. Heat Mass Transf. 37(1), 5–10 (2001)

    ADS  Google Scholar 

  201. D.M. Trujillo, C.G. Pappoff, A general thermal contact resistance finite element. Finite Elem. Anal. Des. 38(3), 263–276 (2002)

    MATH  Google Scholar 

  202. M. Amara, V. Timchenko, M. El Ganaoui, E. Leonardi, Davis G. de Vahl, A 3D computational model of heat transfer coupled to phase change in multilayer materials with random thermal contact resistance. Int. J. Therm. Sci. 48(2), 421–427 (2009)

    Google Scholar 

  203. J. Shen, J. Ma, W.Q. Liu, A numerical calculation method of thermal contact resistance. Aerosp. Shanghai 19(4), 33–36 (2002). (in chinese)

    Google Scholar 

  204. P.D. Wu, Experiment and Numerical Simulation of Thermal Contact Resistance (Beijing Jiaotong University, Beijing, 2011). (in chinese)

    Google Scholar 

  205. H.W. Yang, G.J. Yuan, L. Xiao, Application of ANSYS contact element in simulation of thermal contact resistance. J. Microw. 2012(Suppl 2), 241 (2012). (in chinese)

    Google Scholar 

  206. H.W. Yang, G.J. Yuan, L. Xiao et al., Simulation of thermal contact resistance in collector of traveling wave tube. Chin. J. Vac. Sci. Technol. 33(6), 517 (2013). (in chinese)

    MathSciNet  Google Scholar 

  207. N.L. Han, Experimental Investigation on Thermal Contact Resistance in Grooved Heat Pipe Heat Transfer System (Shanghai Institute of Technical Physics of the Chinese Academy of Science, Beijing, 2017). (in chinese)

    Google Scholar 

  208. J.T. Bevans, T. Ishimoto, B.R. Loya et al., Prediction of Space Vehicle Thermal Characteristics. TRW Systems Group Redondo Beach CA (1965)

  209. R.E. Clarke, G. Rosengarten, B. Shabani, Flexible buffer materials to reduce contact resistance in thermal insulation measurements (2015)

  210. N.L. Han, H.Y. Xu, Y.Y. Chen et al., Experimental investigation of heat transfer capability of “Ω”shape axial grooved heat pipe heat transfer system. Cryogenics 2, 38–44 (2016). (in chinese)

    Google Scholar 

  211. N.L. Han, Y.Y. Chen, H.Y. Xu et al., Experimental investigation of thermal resistance of straight heat pipe heat transfer system. Inferared 37(7), 43–48 (2016). (in chinese)

    Google Scholar 

  212. M.B.H. Mantelli, M.M. Yovanovicht, 16 Thermal Contact Resistance. Spacecraft Thermal Control Handbook (2002), p. 1

  213. M.J. Edmonds, A.M. Jones, S.D. Probert, Thermal contact resistances for hard machined surfaces pressed against relatively soft optical-flats. Appl. Energy 6(6), 405–427 (1980)

    Google Scholar 

  214. Y.H. Tsao, R.W. Heimburg, Effects of surface films on thermal-contact conductance. PT.2. macroscopic experiments (1970)

  215. M. Mian, F. Al-Astrabadi, P. O’Callaghan, S. Probert, Thermal resistance of pressed contacts between steel surfaces: influence of oxide films. J. Mech. Eng. Sci. 21(3), 159–166 (1979)

    Google Scholar 

  216. E. Gale, Effects of surface films on thermal-contact conductance. PT.1. macroscopic experiments (1970)

  217. V.V. Kharitonov, L.S. Kokorev, Y.A. Tyurin, Effect of thermal conductivity of surface layer on contact thermal resistance. Sov. Atomic Energy 36(4), 385–387 (1974)

    Google Scholar 

  218. F. Yip (ed), The effect of oxide films on thermal contact resistance, in Thermophysics and Heat Transfer Conference (1974)

  219. F. Al-Astrabadi, P. Ocallaghan, S. Probert (eds), Thermal resistance of contacts—influence of oxide films, in 15th Thermophysics Conference (1980)

  220. E.E. Marotta, D.G. Blanchard, L.S. Fletcher, Thermal contact conductance of diamond-like films. J. Thermophys. Heat Trans. 10(1), 19–25 (1996)

    Google Scholar 

  221. L. Bianchi, A.C. Leger, M. Vardelle et al., Splat formation and cooling of plasma-sprayed zirconia. Thin Solid Films 305(1–2), 35–47 (1997)

    ADS  Google Scholar 

  222. A. Blahey, J. Tevaarwerk, M. Yovanovich, Contact conductance correlations of elastically deforming flat rough surfaces. AIAA Paper (1980) (80-1470)

  223. X. Luo, H. Feng, J. Liu et al., An experimental investigation on thermal contact resistance across metal contact interfaces, in 2011 12th International Conference on Electronic Packaging Technology and High Density Packaging (IEEE, 2011), pp. 1–6

  224. Y.Z. Li, C.V. Madhusudana, E. Leonardi, On the enhancement of thermal Co191-ntact conductance: effect of overloading, in International Heat Transfer Conference Digital Library (Begel House Inc., 1998)

  225. L. Jiang, B.Y. Jiang, W.Q. Wu et al., Research on thermal contact resistance between polymer and mold during thin-wall injection molding. J. Cent. South Univ. Sci. Technol. 49(6), 1381 (2018). (in chinese)

    Google Scholar 

  226. C.L. Yeh, C.Y. Wen, Y.F. Chen, S.H. Yeh, C.H. Wu, An experimental investigation of thermal contact conductance across bolted joints. Exp. Thermal Fluid Sci. 25(6), 349–357 (2001)

    Google Scholar 

  227. D. Gluck, V. Baturkin, D. Gilmore. Mountings and interfaces. Spacecraft thermal control handbook (2002), p. 1

  228. C.L. Yeh, C.Y. Lin, Thermal contact resistance correlation for metals across bolted joints. Int. Commun. Heat Mass Transf. 30(7), 987–996 (2003)

    Google Scholar 

  229. M. Jalalpour, J.J. Kim, M.M.R. Taha, Monitoring of L-shape bolted joint tightness using thermal contact resistance. Exp. Mech. 53(9), 1531–1543 (2013)

    Google Scholar 

  230. M.E. Barzelay, K.N. Tong, G. Hollo, Thermal conductance of contacts in aircraft joints (1954)

  231. G.F.C. Rogers, Heat transfer at the interface of dissimilar metals. Int. J. Heat Mass Transf. 2(1–2), 150–154 (1961)

    Google Scholar 

  232. R. Holm, Electric Contacts: Theory and Application (Springer, Berlin, 2013)

    Google Scholar 

  233. M. Williamson, A. Majumdar, Effect of surface deformations on contact conductance. J. Heat Transf. 114(4), 802–810 (1992)

    Google Scholar 

  234. A.M. Clausing, Heat transfer at the interface of dissimilar metals—the influence of thermal strain. Int. J. Heat Mass Transf. 9(8), 791–801 (1966)

    Google Scholar 

  235. D.V. Lewis, H.C. Perkins, Heat transfer at the interface of stainless steel and aluminum—the influence of surface conditions on the directional effect. Int. J. Heat Mass Transf. 11(9), 1371–1383 (1968)

    Google Scholar 

  236. S. Chandra, T.N. Veziroglu, Direction effect in thermal contact conductance (1970)

  237. L.H. Zhan, X.Q. Li, S.C. Hu, Experiment research for the interfacial thermal contact resistance. Light Alloy Fabric Technol. 30(9), 40 (2002). (in chinese)

    Google Scholar 

  238. D.D.L. Chung, Thermal interface materials. J. Mater. Eng. Perform. 10(1), 56–59 (2001)

    MathSciNet  Google Scholar 

  239. M.A. Raza, A. Westwood, Thermal contact resistance of various carbon nanomaterial-based epoxy composites developed for thermal interface applications. J. Mater. Sci. Mater. Electron. 30(11), 10630–10638 (2019)

    Google Scholar 

  240. C. Yang, C. Chang, C. Song, W. Shang, J. Wu, P. Tao et al., Fabrication and performance evaluation of flexible heat pipes for potential thermal control of foldable electronics. Appl. Therm. Eng. 95, 445–453 (2016)

    Google Scholar 

  241. R. Viswanath, V. Wakharkar, A. Watwe, V. Lebonheur, Thermal performance challenges from silicon to systems (2000)

  242. M. Ekpu, R. Bhatti, N. Ekere et al. Effects of thermal interface materials (solders) on thermal performance of a microelectronic package, in 2012 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (IEEE, 2012), pp. 154–159

  243. C.Q. Liu, M. Chen, W. Yu, Research progress of thermal interface materials. China Basic Sci. 20(03), 18–32 + 69 (2018). (in chinese)

    Google Scholar 

  244. M. Biercuk, M.C. Llaguno, M. Radosavljevic, J. Hyun, A.T. Johnson, J.E. Fischer, Carbon nanotube composites for thermal management. Appl. Phys. Lett. 80(15), 2767–2769 (2002)

    ADS  Google Scholar 

  245. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)

    ADS  Google Scholar 

  246. M.A. Raza, A. Westwood, C. Stirling, Carbon black/graphite nanoplatelet/rubbery epoxy hybrid composites for thermal interface applications. J. Mater. Sci. 47(2), 1059–1070 (2012)

    ADS  Google Scholar 

  247. C.-K. Leong, Y. Aoyagi, D. Chung, Carbon black pastes as coatings for improving thermal gap-filling materials. Carbon 44(3), 435–440 (2006)

    Google Scholar 

  248. T.A. Howe, C.-K. Leong, D. Chung, Comparative evaluation of thermal interface materials for improving the thermal contact between an operating computer microprocessor and its heat sink. J. Electron. Mater. 35(8), 1628–1635 (2006)

    ADS  Google Scholar 

  249. P. Zhang, Q. Li, Y. Xuan, Thermal contact resistance of epoxy composites incorporated with nano-copper particles and the multi-walled carbon nanotubes. Compos. A Appl. Sci. Manuf. 57, 1–7 (2014)

    Google Scholar 

  250. H. Huang, C. Liu, Y. Wu, S. Fan, Aligned carbon nanotube composite films for thermal management. Adv. Mater. 17(13), 1652–1656 (2005)

    Google Scholar 

  251. J. Xu, T.S. Fisher, Enhancement of thermal interface materials with carbon nanotube arrays. Int. J. Heat Mass Transf. 49(9–10), 1658–1666 (2006)

    Google Scholar 

  252. C. Lin, D. Chung, Nanoclay paste as a thermal interface material for smooth surfaces. J. Electron. Mater. 37(11), 1698–1709 (2008)

    ADS  Google Scholar 

  253. C. Lin, D. Chung, Graphite nanoplatelet pastes vs carbon black pastes as thermal interface materials. Carbon 47(1), 295–305 (2009)

    Google Scholar 

  254. M. Sharma, D. Chung, Solder–graphite network composite sheets as high-performance thermal interface materials. J. Electron. Mater. 44(3), 929–947 (2015)

    ADS  Google Scholar 

  255. M.A. Raza, A. Westwood, C. Stirling, Graphite nanoplatelet/rubbery epoxy composites as adhesives and pads for thermal interface applications. J. Mater. Sci. Mater. Electron. 29(10), 8822–8837 (2018)

    Google Scholar 

  256. R.S. Prasher, Surface chemistry and characteristics based model for the thermal contact resistance of fluidic interstitial thermal interface materials. J. Heat Transf. 123(5), 969–975 (2001)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation Projects (No. 51806231), the Natural Science Foundation of Shanghai (No. 18ZR1445600), the Strategic Priority Research Program of Chinese Academic of Sciences (XDB35000000), the Aeronautical Science Foundation of China (20172490002), National Key R&D Program of China (2016YFB0500600) and the China Postdoctoral Science Foundation (2018M630476).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoshuai Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Cui, X., Liu, S. et al. Research Progress of Thermal Contact Resistance. J Low Temp Phys 201, 213–253 (2020). https://doi.org/10.1007/s10909-020-02497-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02497-0

Keywords

Navigation