Skip to main content
Log in

Experimental Study of Stable Circular Hydraulic Jumps

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The geometry of a downstream obstacle is one of the major parameters affecting the stability range of circular hydraulic jumps and, yet, it has not been adequately addressed by researchers. The present study investigates the effects of the downstream obstacle geometry and the parameters like the flow rate, the jet diameter, and the downstream obstacle height on the stability range of circular hydraulic jumps. Its findings indicate that an increase in the fluid jet diameter leads to the narrowing of the stability range of circular jumps. In addition, an increase in the downstream obstacle height produces a reduction of the hydraulic jump radius and its stability range. The results also show that in the presence of a square downstream obstacle the stability range of circular jumps is less than that in the case of a triangular downstream obstacle and greater than in the case of a circular downstream obstacle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. In classifying the types of flows basing on the Froude number, the critical flow is the flow with a Froude number equal to one. The Froude number (Fr = \({v}\)/c) is the fluid velocity \({v}\) divided by the wave velocity in shallow water c = \(\sqrt {gy} \). If the fluid velocity is higher than the wave velocity, the flow is supercritical and it will carry the wave. So, the wave cannot move upstream. In this case, any phenomenon that occurs in the stream affects only its downstream. On the other hand, if the fluid velocity is lower than the wave velocity, the flow is subcritical and the wave can move upstream. In this case, any phenomenon that occurs in the flow also affects its upstream.

REFERENCES

  1. C. Avedisian and Z. Zhao, “The circular hydraulic jump in low gravity,” Proc. Roy. Soc. London. Ser. A 456, 2127–2151 (2000).

    Article  Google Scholar 

  2. R. Kate, P. Das, and S. Chakraborty, “An investigation on non-circular hydraulic jumps formed due to obliquely impinging circular fluid jets,” Exp. Therm. Fluid Sci. 32, 1429–1439 (2008).

    Article  Google Scholar 

  3. Lord Rayleigh, “On the theory of long waves and bores,” Proc. Roy. Soc. London. Ser. A. 90(619), 324–328 (1914).

  4. G. Birkhoff and E. Zarantonello, Jets, Wakes, and Cavities (Academic Press, New York, 1957).

    MATH  Google Scholar 

  5. E. Watson, “The radial spread of a fluid jet over a horizontal plane,” J. Fluid Mech. 20, 481-499 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Craik, R. Latham, M. Fawkes, and P. Gribbon, “The circular hydraulic jump,” J. Fluid Mech. 112, 347–362 (1981).

    Article  ADS  Google Scholar 

  7. M. Errico, A study of the interaction of fluid jets with solid surfaces (University of California, San Diego, 1986).

    Google Scholar 

  8. X. Liu and J. H. Lienhard, “The hydraulic jump in circular jet impingement and in other thin fluid films,” Exp. Fluids. 15, 108–116 (1993).

    Article  Google Scholar 

  9. J. W. Bush and J. M. Aristoff, “The influence of surface tension on the circular hydraulic jump,” J. Fluid Mech. 489, 229–238 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  10. C. Ellegaard, A. E. Hansen, A. Haaning, and T. Bohr, “Experimental results on flow separation and transitions in the circular hydraulic jump,” PhysicaScripta105 (1996).

  11. J. W. Bush, J. M. Aristoff, and A. Hosoi, “An experimental investigation of the stability of the circular hydraulic jump,” J. Fluid Mech. 558, 33–52 (2006).

    Article  ADS  Google Scholar 

  12. T. Bohr, P. Dimon, and V. Putkaradze, “Shallow-water approach to the circular hydraulic jump,” J. Fluid Mech. 254, 635–648 (1993).

    Article  ADS  Google Scholar 

  13. T. Bohr, V. Putkaradze, and S. Watanabe, “Averaging theory for the structure of hydraulic jumps and separation in laminar free-surface flows,” Phys. Rev. Lett. 79, 1038 (1997).

    Article  ADS  Google Scholar 

  14. F. Higuera, “The hydraulic jump in a viscous laminar flow,” J. Fluid Mech. 274, 69–92 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  15. K. Yokoi and F. Xiao, “A numerical study of the transition in the circular hydraulic jump,” Phys. Lett. A257, 153–157 (1999).

    Article  ADS  Google Scholar 

  16. K. Yokoi and F. Xiao, “Mechanism of structure formation in circular hydraulic jumps: Numerical studies of strongly deformed free-surface shallow flows,” Phys. D: Nonlinear Phenomena161, 202–219 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  17. V. Ferreira, M. Tome, N. Mangiavacchi, A. Castelo, J. Cuminato, A. Fortuna, and S. Mckee, “High-order upwinding and the hydraulic jump,” Int. J. Numer. Methods Fluids39, 549–583 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  18. S. Watanabe, V. Putkaradze, and T. Bohr, “Integral methods for shallow free-surface flows with separation,” J. Fluid Mech. 480, 233–265 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  19. A. K. Ray and J. K. Bhattacharjee, “Standing and travelling waves in the shallow-water circular hydraulic jump,” Phys. Lett. A 371, 241–248 (2007).

    Article  ADS  Google Scholar 

  20. J. Mikielewicz and D. Mikielewicz, “A simple dissipation model of circular hydraulic jump,” Int. J. Heat Mass Transfer52, 17–21 (2009).

    Article  Google Scholar 

  21. M. Passandideh-Fard, A. R. Teymourtash, and M. Khavari, “Numerical study of circular hydraulic jump using volume-of-fluid method,” J. Fluids Eng. 133, 011401 (2011).

    Article  Google Scholar 

  22. C. W. Hirt and B. D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries,” J. Comput. Phys. 39, 201–225 (1981).

    Article  ADS  Google Scholar 

  23. C. Ellegaard, A. E. Hansen, A. Haaning, K. Hansen, A. Marcussen, T. Bohr, J. L. Hansen, and S. Watanabe, “Cover illustration: Polygonal hydraulic jumps,” Nonlinearity12, 1 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  24. A. R. Teymourtash and M. Mokhlesi, “Experimental investigation of stationary and rotational structures in non-circular hydraulic jumps,” J. Fluid Mech.762, 344–360 (2015).

    Article  ADS  Google Scholar 

  25. A. R. Kasimov, “A stationary circular hydraulic jump, the limits of its existence and its gasdynamic analogue,” J. Fluid Mech. 601, 189–198 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  26. E. A. Martens, S. Watanabe, and T. Bohr, “Model for polygonal hydraulic jumps,” Phys. Rev. E 85, 036316 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Malek Jafarian.

Ethics declarations

The Authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadi, A., Jafarian, S. & Teymourtash, A. Experimental Study of Stable Circular Hydraulic Jumps. Fluid Dyn 55, 477–487 (2020). https://doi.org/10.1134/S0015462820040035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462820040035

Keywords:

Navigation