Skip to main content

Advertisement

Log in

Research on the thermal performance of rack-level composite baffle diversion system for data centre

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

Airflow management plays an important role in ensuring secured and energy-efficient operation of data centres (DCs). Higher power density in DC is a risk resulting in serious deterioration of airflow distribution accompanied by the increasing cooling energy demand. In this study, the airflow optimization effects of rack baffles and server lower-side terminal baffles on the thermal environment are first validated by experiments. Then, the optimization mechanisms of the two baffle systems are analysed by numerical simulations. The results show that the optimization mechanisms of these two systems are different and the combination can contribute to better airflow distribution than separate baffles. The analysis is validated by altogether 12 cases in 3 scenarios where different combinations of the two systems were included. The results validated the combination of 8 cm × 45° server lower-side terminal baffles and 20 cm × 75° rack baffles can further improve the airflow distribution and relieve heat accumulation in the DC. The impacts of combined baffle system on the thermal environment in DC are analysed by experiments and simulations. The combined system superposes the airflow optimization functions of the two systems. The maximum temperature drop of the hotspot is 0.7 °C, which is 0.4 °C lower than that when only optimal rack baffles or server lower-side terminal baffles are installed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Abanto, J., Barrero, D., Reggio, M., & Ozell, B. (2004). Airflow modelling in a computer room. Building and Environment., 39(12), 1393–1402.

    Google Scholar 

  • Alkharabsheh, S., Fernandes, J., Gebrehiwot, B., Agonafer, D., Ghose, K., Ortega, A., et al. (2015). A brief overview of recent developments in thermal management in data centers. Journal of Electronic Packaging Transactions of the Asme, 137(4):040801.1–040801.19.

  • Almoli, A., Thompson, A., Kapur, N., Summers, J., Thompson, H., & Hannah, G. (2012). Computational fluid dynamic investigation of liquid rack cooling in data centres. Applied Energy., 89(1), 150–155.

    Google Scholar 

  • Ashrae, T. 9.9 (2011) Thermal guidelines for data processing environments–expanded data center classes and usage guidance. Whitepaper prepared by ASHRAE technical committee (TC). 2011;9.

  • Avgerinou, M., Bertoldi, P., & Castellazzi, L. (2017). Trends in data centre energy consumption under the European code of conduct for data centre energy efficiency. Energies., 10, 1470.

    Google Scholar 

  • Boucher, T. D., Auslander, D. M., Bash, C. E., Federspiel, C. C., editors. (2006) Viability of dynamic cooling control in a data center environment. Thermal and Thermomechanical Phenomena in Electronic Systems, 2004 ITHERM '04 The Ninth Intersociety Conference on.

  • Chauhan, A., & Kandlikar, S. G. (2019). Characterization of a dual taper thermosiphon loop for CPU cooling in data centers. Applied Thermal Engineering., 146, 450–458.

    Google Scholar 

  • Cho, J., & Kim, Y. (2016). Improving energy efficiency of dedicated cooling system and its contribution towards meeting an energy-optimized data center. Applied Energy., 165, 967–982.

    Google Scholar 

  • Daraghmeh, H. M., & Wang, C.-C. (2017). A review of current status of free cooling in datacenters. Applied Thermal Engineering., 114, 1224–1239.

    Google Scholar 

  • Dayarathna, M., Wen, Y., & Fan, R. (2016). Data center energy consumption modeling: a survey. IEEE Communications Surveys & Tutorials., 18(1), 732–794.

    Google Scholar 

  • Dewan, A., & Srivastava, P. (2015). A review of heat transfer enhancement through flow disruption in a microchannel. Journal of Thermal Science., 24(3), 203–214.

    Google Scholar 

  • Habibi Khalaj, A., & Halgamuge, S. K. (2017). A review on efficient thermal management of air- and liquid-cooled data centers: from chip to the cooling system. Applied Energy., 205, 1165–1188.

    Google Scholar 

  • Ham, S.-W., Kim, M.-H., Choi, B.-N., & Jeong, J.-W. (2015a). Energy saving potential of various air-side economizers in a modular data center. Applied Energy., 138, 258–275.

    Google Scholar 

  • Ham, S.-W., Park, J.-S., & Jeong, J.-W. (2015b). Optimum supply air temperature ranges of various air-side economizers in a modular data center. Applied Thermal Engineering., 77, 163–179.

    Google Scholar 

  • Joshi, Y., Joshi, Y. (2012). Energy Efficient Thermal Management of Data Centers.

  • Kurkjian, C., & Glass, J. (2007). Meeting the needs of 24/7 data centers. ASHRAE Journal., 49(2), 24.

    Google Scholar 

  • Le Masson, S., Nörtershäuser, D., Mondieig, D., & Louahlia-Gualous, H. (2012). Towards passive cooling solutions for mobile access network. Annals of Telecommunications-Annales des Télécommunications, 67(3–4), 125–132.

    Google Scholar 

  • Liu, C.-l., Wolfersdorf, J., & Zhai, Y.-n. (2014). Time-resolved heat transfer characteristics for steady turbulent flow with step changing and periodically pulsating flow temperatures. International Journal of Heat and Mass Transfer., 76, 184–198.

    Google Scholar 

  • Ma, Y., Ma, G., Zhang, S., & Zhou, F. (2016). Cooling performance of a pump-driven two phase cooling system for free cooling in data centers. Applied Thermal Engineering., 95, 143–149.

    Google Scholar 

  • Mittal, S. (2014). Power management techniques for data centers: A survey. arXiv preprint arXiv:14046681.

  • Nada, S. A., & Elfeky, K. E. (2016). Experimental investigations of thermal managements solutions in data centers buildings for different arrangements of cold aisles containments. Journal of Building Engineering., 5, 41–49.

    Google Scholar 

  • Najjar, F. M., Thomas, B. G., & Hershey, D. E. (1995). Numerical study of steady turbulent flow through bifurcated nozzles in continuous casting. Metallurgical & Materials Transactions B., 26(4), 749–765.

    Google Scholar 

  • Ni, J., Jin, B., Zhang, B., & Wang, X. (2017). Simulation of thermal distribution and airflow for efficient energy consumption in a small data centers. Sustainability., 9(4), 664.

    Google Scholar 

  • Oró, E., Depoorter, V., Garcia, A., & Salom, J. (2015). Energy efficiency and renewable energy integration in data centres. Strategies and modelling review. Renewable and Sustainable Energy Reviews., 42, 429–445.

    Google Scholar 

  • Pawlish, M., Aparna, S. V., editors. (2010). Free cooling: a paradigm shift in data centers. 2010 Fifth International Conference on Information and Automation for Sustainability: IEEE.

  • Phan, L., Hu, B., & Lin, C.-X. (2019). An evaluation of turbulence and tile models at server rack level for data centers. Building and Environment., 155, 421–435.

    Google Scholar 

  • Priyadumkol, J., & Kittichaikarn, C. (2014). Application of the combined air-conditioning systems for energy conservation in data center. Energy and Buildings., 68, 580–586.

    Google Scholar 

  • Qian, X., Li, Z., & Li, Z. (2013). A thermal environmental analysis method for data centers. International Journal of Heat and Mass Transfer., 62, 579–585.

    Google Scholar 

  • Qian, X., Li, Z., & Li, Z. (2015). Entransy and exergy analyses of airflow organization in data centers. International Journal of Heat and Mass Transfer., 81, 252–259.

    Google Scholar 

  • Sakanova, A., Alimohammadi, S., McEvoy, J., Battaglioli, S., & Persoons, T. (2019). Multi-objective layout optimization of a generic hybrid-cooled data centre blade server. Applied Thermal Engineering., 156, 514–523.

    Google Scholar 

  • Schmidt, R. R., Cruz, E., & Iyengar, M. (2005). Challenges of data center thermal management. IBM Journal of Research and Development, 49(4.5), 709–723.

    Google Scholar 

  • Schmidt, R. R., Iyengar, M., & van der Mersch, P. L. (2007). Best practices for data center thermal and energy management-review of literature/DISCUSSION. ASHRAE Transactions., 113, 206.

    Google Scholar 

  • Sheth, D. V., & Saha, S. K. (2019). Numerical study of thermal management of data centre using porous medium approach. Journal of Building Engineering., 22, 200–215.

    Google Scholar 

  • Silva-Llanca, L., Ortega, A., Fouladi, K., del Valle, M., & Sundaralingam, V. (2018). Determining wasted energy in the airside of a perimeter-cooled data center via direct computation of the exergy destruction. Applied Energy., 213, 235–246.

    Google Scholar 

  • Siriwardana, J. (2012). Energy efficiency enhancement and optimisation for data centres: Ph. D. thesis, The University of Melbourne, Mechanical Engineering Department;

  • Siriwardana, J., Halgamuge, S. K., Scherer, T., & Schott, W. (2012). Minimizing the thermal impact of computing equipment upgrades in data centers. Energy and Buildings., 50, 81–92.

    Google Scholar 

  • Siriwardana, J., Jayasekara, S., & Halgamuge, S. K. (2013). Potential of air-side economizers for data center cooling: a case study for key Australian cities. Applied Energy., 104, 207–219.

    Google Scholar 

  • Song, Z. (2016). Thermal performance of a contained data center with fan-assisted perforations. Applied Thermal Engineering., 102, 1175–1184.

    Google Scholar 

  • Wang, I. N., Tsui, Y.-Y., & Wang, C.-C. (2015). Improvements of airflow distribution in a container data center. Energy Procedia, 75, 1819–1824.

    Google Scholar 

  • Wang, J., Zhang, Q., Yoon, S., & Yu, Y. (2019a). Reliability and availability analysis of a hybrid cooling system with water-side economizer in data center. Building and Environment., 148, 405–416.

    Google Scholar 

  • Wang, J., Zhang, Q., Yoon, S., & Yu, Y. (2019b). Impact of uncertainties on the supervisory control performance of a hybrid cooling system in data center. Building and Environment., 148, 361–371.

    Google Scholar 

  • Yuan, X., Wang, Y., Liu, J., Xu, X., & Yuan, X. (2018). Experimental and numerical study of airflow distribution optimisation in high-density data centre with flexible baffles. Building and Environment., 140, 128–139.

    Google Scholar 

  • Yuan, X., Zhou, X., Liu, J., & Wang, Y. (2019). Risto k, Xu X. experimental and numerical investigation of an airflow management system in data center with lower-side terminal baffles for servers. Building and Environment., 155, 308–319.

    Google Scholar 

  • Zametaev, V. B., Gorbushin, A. R., & Lipatov, I. I. (2019). Steady secondary flow in a turbulent mixing layer. International Journal of Heat and Mass Transfer., 132, 655–661.

    MATH  Google Scholar 

  • Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: state-of-the-art and research challenges. Journal of internet services and applications., 1(1), 7–18.

    Google Scholar 

  • Zhang, H., Shao, S., Xu, H., Zou, H., & Tian, C. (2014). Free cooling of data centers: a review. Renewable and Sustainable Energy Reviews., 35, 171–182.

    Google Scholar 

  • Zhang, M., An, Q., Long, Z., Pan, W., Zhang, H., & Cheng, X. (2017). Optimization of airflow Organization for a Small-scale Date Center Based on the cold aisle closure. Procedia Engineering., 205, 1893–1900.

    Google Scholar 

  • Zhang, K., Zhang, Y., Liu, J., & Niu, X. (2018). Recent advancements on thermal management and evaluation for data centers. Applied Thermal Engineering., 142, 215–231.

    Google Scholar 

  • Zou, S., Zhang, Q., Yu, Y., Yue, C., Wang, J., & Ma, X. (2019). Field study on the self-adaptive capacity of multi-split heat pipe system (MSHPS) under non-uniform conditions in data center. Applied Thermal Engineering, 160, 113999.

Download references

Acknowledgments

We acknowledge the assistance provided by the Information Centre of Nanjing Tech University in conducting the onsite experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolei Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Yuan, X., Xu, X. et al. Research on the thermal performance of rack-level composite baffle diversion system for data centre. Energy Efficiency 13, 1245–1262 (2020). https://doi.org/10.1007/s12053-020-09881-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-020-09881-5

Keywords

Navigation