Skip to main content
Log in

Modeling interactions of natural and two-phase fluid-filled fracture propagation in porous media

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In this paper, a novel computational framework is introduced for simulation of multiphase flow, geomechanics, and fracture propagation in porous media based on Biot’s model for poroelasticity by focusing on interactions between hydraulic and natural fractures. Since realistic porous media contain many natural fractures, it is important not only to stimulate hydraulic fractures but also to study the interaction between natural and hydraulic fractures. Here, state-of-the-art numerical modeling of natural and hydraulic fractures using a diffusive adaptive finite element phase field approach is employed. The locally mass conservative enriched Galerkin finite element methods (EG) are utilized to model two-phase flow in propagating fractures with relative permeability and capillary pressure. Geomechanics approximated by a continuous Galerkin finite element method is coupled to multiphase flow by applying an iteratively coupled scheme. Numerical examples are presented that demonstrate the effectiveness of this framework for different propagation scenarios by varying the degrees of physics. In addition, the capabilities to perform high-fidelity simulations on complex fracture networks, with randomly joined diffusive natural fractures, are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbasi, M., Dehghanpour, H., Hawkes, R. V.: Flowback Analysis for Fracture Characterization. In: SPE Canadian Unconventional Resources Conference. Society of Petroleum Engineers (2012)

  2. Alkouh, A., McKetta, S., Wattenbarger, R. A.: Estimation of effective-fracture volume using water-flowback and production data for shale-gas wells. J. Can. Pet. Technol. 53(05), 290–303 (2014)

    Google Scholar 

  3. Almani, T., Lee, S., Wheeler, M., Wick, T.: Multirate Coupling for Flow and Geomechanics Applied to Hydraulic Fracturing Using an Adaptive Phase-Field Technique. SPE RSC 182610-MS, Feb. 2017, Montgomery, Texas, USA (2017)

  4. Alzetta, G., Arndt, D., Bangerth, W., Boddu, V., Brands, B., Davydov, D., Gassmoeller, R., Heister, T., Heltai, L., Kormann, K., Kronbichler, M., Maier, M., Pelteret, J. P., Turcksin, B., Wells, D.: The deal.II library, version 9.0. J. Numer. Math. 26(4), 173–183 (2018). https://doi.org/10.1515/jnma-2018-0054

    Article  Google Scholar 

  5. Ambati, M., Gerasimov, T., De Lorenzis, L.: Phase-field modeling of ductile fracture. Comput. Mech. 55(5), 1017–1040 (2015)

    Google Scholar 

  6. Ambati, M., Gerasimov, T., De Lorenzis, L.: A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput. Mech. 55(2), 383–405 (2015)

    Google Scholar 

  7. Ambrosio, L., Tortorelli, V.: Approximation of functionals depending on jumps by elliptic functionals via γ-convergence. Comm. Pure Appl. Math. 43, 999–1036 (1990)

    Google Scholar 

  8. Ambrosio, L., Tortorelli, V.: On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B 6, 105–123 (1992)

    Google Scholar 

  9. Amor, H., Marigo, J. J., Maurini, C.: Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. Journal of Mechanics Physics of Solids 57, 1209–1229 (2009)

    Google Scholar 

  10. Arbogast, T., Juntunen, M., Pool, J., Wheeler, M. F.: A discontinuous Galerkin method for two-phase flow in a porous medium enforcing H (div) velocity and continuous capillary pressure. Comput. Geosci. 17(6), 1055–1078 (2013)

    Google Scholar 

  11. Babchin, A., Faybishenko, B.: On the capillary pressure function in porous media based on relative permeabilities of two immiscible fluids. Colloids Surf. A Physicochem. Eng. Asp. 462, 225–230 (2014)

    Google Scholar 

  12. Barenblatt, G.: The Mathematical Theory of Equilibrium Cracks in Brittle Fracture, pp 55–129. Elsevier, Amsterdam (1962)

    Google Scholar 

  13. Barree, R. D., Mukherjee, H.: Engineering criteria for fracture flowback procedures. In: Low Permeability Reservoirs Symposium. Society of Petroleum Engineers (1995)

  14. Biot, M.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    Google Scholar 

  15. Biot, M.: Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33, 14–82 (1962)

    Google Scholar 

  16. Borden, M. J., Verhoosel, C. V., Scott, M. A., Hughes, T. J. R., Landis, C. M.: A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng. 217, 77–95 (2012)

    Google Scholar 

  17. Bourdin, B., Chukwudozie, C., Yoshioka, K.: A variational approach to the numerical simulation of hydraulic fracturing. SPE Journal Conference Paper 159154-MS (2012)

  18. Bourdin, B., Francfort, G., Marigo, J. J.: Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4), 797–826 (2000)

    Google Scholar 

  19. Bourdin, B., Francfort, G., Marigo, J. J.: The variational approach to fracture. J. Elasticity 91(1–3), 1–148 (2008)

    Google Scholar 

  20. Bourdin, B., Marigo, J. J., Maurini, C., Sicsic, P.: Morphogenesis and propagation of complex cracks induced by thermal shocks. Phys. Rev. Lett. 112, 014301 (2014)

    Google Scholar 

  21. Brun, M.K., Wick, T., Berre, I., Nordbotten, J.M., Radu, F.A.: An iterative staggered scheme for phase field brittle fracture propagation with stabilizing parameters. Computer Methods in Applied Mechanics and Engineering 361, 112752 (2020). https://doi.org/10.1016/j.cma.2019.112752. http://www.sciencedirect.com/science/article/pii/S0045782519306425

    Article  Google Scholar 

  22. Cajuhi, T., Sanavia, L., De Lorenzis, L.: Phase-field modeling of fracture in variably saturated porous media. Computational Mechanics (2017)

  23. Castelletto, N., White, J. A., Tchelepi, H. A.: Accuracy and convergence properties of the fixed-stress iterative solution of two-way coupled poromechanics. Int. J. Numer. Anal. Methods Geomech. 39(14), 1593–1618 (2015)

    Google Scholar 

  24. Chai, Z., Yan, B., Killough, J., Wang, Y.: An efficient method for fractured shale reservoir history matching: The embedded discrete fracture multi-continuum approach. J. Pet. Sci. Eng. 160, 170–181 (2018)

    Google Scholar 

  25. Chen, Z., Huan, G., Ma, Y.: Computational methods for multiphase flows in porous media. SIAM (2006)

  26. Choo, J., Lee, S.: Enriched galerkin finite elements for coupled poromechanics with local mass conservation. Comput. Methods Appl.Mech. Eng. 341, 311 –332 (2018)

    Google Scholar 

  27. Choo, J., Sun, W.: Cracking and damage from crystallization in pores: Coupled chemo-hydro-mechanics and phase-field modeling. Comput. Methods Appl. Mech. Eng. 335, 347–379 (2018)

    Google Scholar 

  28. Chukwudozie, C., Bourdin, B., Yoshioka, K.: A variational phase-field model for hydraulic fracturing in porous media. Comput. Methods Appl. Mech. Eng. 347, 957–982 (2019)

    Google Scholar 

  29. Crafton, J. W., Gunderson, D. W.: Stimulation flowback management–keeping a good completion good. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2007)

  30. Dahi-Taleghani, A., Olson, J. E., et al.: Numerical modeling of multistranded-hydraulic-fracture propagation: accounting for the interaction between induced and natural fractures. SPE journal 16(03), 575–581 (2011)

    Google Scholar 

  31. Delorme, M., Bossie-Codreanu, D., Ben-Gharbia, I., Khebzegga, O., Khebzegga, N., Ricois, O., et al.: Unconventional production forecast needs integration of field hydraulic stimulation data through fracture model calibration and optimized numerical scheme. In: SPE Argentina Exploration and Production of Unconventional Resources Symposium. Society of Petroleum Engineers (2016)

  32. El-Amin, M. F., Kou, J., Sun, S., Salama, A.: An iterative implicit scheme for nanoparticles transport with two-phase flow in porous media. Procedia Computer Science 80, 1344–1353 (2016)

    Google Scholar 

  33. Ezulike, O., Dehghanpour, H., Virues, C., Hawkes, R. V., Jones Jr, R. S.: Flowback fracture closure: a key factor for estimating effective pore volume. SPE Reservoir Evaluation & Engineering 19 (04), 567–582 (2016)

    Google Scholar 

  34. Francfort, G., Marigo, J. J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)

    Google Scholar 

  35. Gale, J. F., Reed, R. M., Holder, J.: Natural fractures in the barnett shale and their importance for hydraulic fracture treatments. AAPG bulletin 91(4), 603–622 (2007)

    Google Scholar 

  36. Griffith, A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. 221, 163–198 (1921)

    Google Scholar 

  37. Haluszczak, L. O., Rose, A. W., Kump, L. R.: Geochemical evaluation of flowback brine from marcellus gas wells in Pennsylvania, Usa. Appl. Geochem. 28, 55–61 (2013)

    Google Scholar 

  38. Heider, Y., Markert, B.: A phase-field modeling approach of hydraulic fracture in saturated porous media. Mechanics Research Communications 80, 38–46 (2017). Multi-Physics of Solids at Fracture

    Google Scholar 

  39. Heister, T., Wheeler, M. F., Wick, T.: A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach. Comput. Methods Appl. Mech. Engrg. 290, 466–495 (2015)

    Google Scholar 

  40. Heroux, M., Bartlett, R., Hoekstra, V. H. R., Hu, J., Kolda, T., Lehoucq, R., Long, K., Pawlowski, R., Phipps, E., Salinger, A., Thornquist, H., Tuminaro, R., Willenbring, J., Williams, A.: An overview of trilinos. Tech. Rep. SAND2003-2927 Sandia National Laboratories (2003)

  41. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth newton method. SIAM J. Optim. 13(3), 865–888 (2002)

    Google Scholar 

  42. HosseiniMehr, M., Cusini, M., Vuik, C., Hajibeygi, H.: Algebraic dynamic multilevel method for embedded discrete fracture model (f-adm). J. Comput. Phys. 373, 324–345 (2018)

    Google Scholar 

  43. Hoteit, H., Firoozabadi, A.: Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures. Adv. Water Resour. 31(1), 56–73 (2008)

    Google Scholar 

  44. Jacobs, T.: To solve frac hits, unconventional engineering must revolve around them. https://www.spe.org/en/jpt/jpt-article-detail/?art= 5089 (2019)

  45. Jammoul, M., Ganis, B., Wheeler, M.: General semi-structured discretization for flow and geomechanics on diffusive fracture networks. In: SPE Reservoir Simulation Conference. Society of Petroleum Engineers (2019)

  46. Kadeethum, T., Nick, H., Lee, S., Richardson, C., Salimzadeh, S., Ballarin, F.: A novel enriched galerkin method for modelling coupled flow and mechanical deformation in heterogeneous porous media. In: 53rd US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, New York, NY, USA (2019)

  47. Karma, A., Kessler, D. A., Levine, H.: Phase-field model of mode iii dynamic fracture. Phys. Rev. Lett. 87, 045501 (2001)

    Google Scholar 

  48. Khvoenkova, N., Delorme, M.: An optimal method to model transient flows in 3D discrete fracture network. In: IAMG Conference, vol. 2011, pp 1238–1249 (2011)

  49. Kim, J., Tchelepi, H., Juanes, R.: Stability, accuracy, and efficiency of sequentiel methods for flow and geomechanics. SPE J. 16(2), 249–262 (2011)

    Google Scholar 

  50. Kim, J., Tchelepi, H., Juanes, R.: Stability and convergence of sequentiel methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits. Comput. Methods Appl. Mech. Eng. 200(13-16), 1591–1606 (2011)

    Google Scholar 

  51. Ladyzhenskaja, O., Solonnikov, V., Uralceva, N.: Linear and quasi-linear equations of parabolic type. Translations of mathematical monographs. AMS, vol. 23 (1968)

  52. Laubach, S. E., Olson, J. E., Gale, J. F.: Are open fractures necessarily aligned with maximum horizontal stress? Earth Planet. Sci. Lett. 222(1), 191–195 (2004)

    Google Scholar 

  53. Lee, S., Jensen, C., Lough, M., et al.: An efficient finite difference model for flow in a reservoir with multiple length-scale fractures. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1999)

  54. Lee, S., Lee, Y. J., Wheeler, M. F.: A locally conservative enriched galerkin approximation and efficient solver for elliptic and parabolic problems. SIAM J. Sci. Comput. 38(3), A1404–A1429 (2016)

    Google Scholar 

  55. Lee, S., Mikelić, A., Wheeler, M., Wick, T.: Phase-field modeling of two phase fluid filled fractures in a poroelastic medium. Multiscale Modeling & Simulation 16(4), 1542–1580 (2018)

    Google Scholar 

  56. Lee, S., Mikelić, A., Wheeler, M.F., Wick, T.: Phase-field modeling of proppant-filled fractures in a poroelastic medium. Comput. Methods Appl. Mech. Eng. 312, 509–541 (2016). Phase Field Approaches to Fracture

    Google Scholar 

  57. Lee, S., Min, B., Wheeler, M. F.: Optimal design of hydraulic fracturing in porous media using the phase field fracture model coupled with genetic algorithm. Comput. Geosci. 22(3), 833–849 (2018)

    Google Scholar 

  58. Lee, S., Reber, J. E., Hayman, N. W., Wheeler, M. F.: Investigation of wing crack formation with a combined phase-field and experimental approach. Geophys. Res. Lett. 43(15), 7946–7952 (2016)

    Google Scholar 

  59. Lee, S., Wheeler, M. F.: Adaptive enriched galerkin methods for miscible displacement problems with entropy residual stabilization. J. Computational Phys. 331, 19 –37 (2017)

    Google Scholar 

  60. Lee, S., Wheeler, M. F.: Enriched galerkin methods for two-phase flow in porous media with capillary pressure. J. Comput. Phys. 367, 65–86 (2018)

    Google Scholar 

  61. Lee, S., Wheeler, M.F., Wick, T.: Iterative coupling of flow, geomechanics and adaptive phase-field fracture including blue level-set crack width approaches. Journal of Computational and Applied Mathematics (2016)

  62. Lee, S., Wheeler, M. F., Wick, T.: Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model. Comput. Methods Appl. Mech. Eng. 305, 111–132 (2016)

    Google Scholar 

  63. Lee, S., Wheeler, M.F., Wick, T.: Srinivasan, S.: Initialization of phase-field fracture propagation in porous media using probability maps of fracture networks. Mech. Res. Commun. 80, 16–23 (2017). Multi-Physics of Solids at Fracture

    Google Scholar 

  64. Mandal, T. K., Nguyen, V. P., Heidarpour, A.: Phase field and gradient enhanced damage models for quasi-brittle failure: a numerical comparative study. Eng. Fract. Mech. 207, 48–67 (2019)

    Google Scholar 

  65. Markert, B., Heider, Y.: Recent Trends in Computational Engineering - CE2014: Optimization, Uncertainty, Parallel Algorithms, Coupled and Complex Problems, chap. Coupled Multi-Field Continuum Methods for Porous Media Fracture, pp 167–180. Springer International Publishing, Cham (2015)

    Google Scholar 

  66. McClure, M.: An accurate and efficient method for calculating fluid exchange between fractures and matrix with a non-conforming mesh. arXiv:1709.02493 (2017)

  67. Miehe, C., Hofacker, M., Schaenzel, L. M., Aldakheel, F.: Phase field modeling of fracture in multi-physics problems. Part ii. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic plastic solids. Comput. Methods Appl. Mech. Eng. 294, 486–522 (2015)

    Google Scholar 

  68. Miehe, C., Mauthe, S.: Phase field modeling of fracture in multi-physics problems. part III. crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media. Comput. Methods Appl. Mech. Eng. 304, 619–655 (2016)

    Google Scholar 

  69. Miehe, C., Mauthe, S., Teichtmeister, S.: Minimization principles for the coupled problem of darcy–biot-type fluid transport in porous media linked to phase field modeling of fracture. Journal of the Mechanics and Physics of Solids 82, 186–217 (2015)

    Google Scholar 

  70. Miehe, C., Schaenzel, L. M., Ulmer, H.: Phase field modeling of fracture in multi-physics problems. Part i. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Comput. Methods Appl. Mech. Eng. 294, 449–485 (2015)

    Google Scholar 

  71. Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field fe implementations. International Journal of Numerical Methods in Engineering 83, 1273–1311 (2010)

    Google Scholar 

  72. Mikelić, A., Wang, B., Wheeler, M. F.: Numerical convergence study of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 18(3-4), 325–341 (2014)

    Google Scholar 

  73. Mikelić, A., Wheeler, M. F.: Convergence of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 17(3), 455–462 (2012)

    Google Scholar 

  74. Mikelić, A., Wheeler, M. F., Wick, T.: A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium. SIAM Multiscale Modeling and Simulation 13(1), 367–398 (2015)

    Google Scholar 

  75. Mikelić, A., Wheeler, M. F., Wick, T.: Phase-field modeling of a fluid-driven fracture in a poroelastic medium. Comput. Geosci. 19(6), 1171–1195 (2015)

    Google Scholar 

  76. Mikelić, A., Wheeler, M. F., Wick, T.: A quasi-static phase-field approach to pressurized fractures. Nonlinearity 28(5), 1371–1399 (2015)

    Google Scholar 

  77. Nguyen, T. T., Yvonnet, J., Zhu, Q. Z., Bornert, M., Chateau, C.: A phase-field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography. Comput. Methods Appl. Mech. Eng. 312, 567–595 (2016)

    Google Scholar 

  78. Noii, N., Wick, T.: A phase-field description for pressurized and non-isothermal propagating fractures. Comput. Methods Appl. Mech. Eng. 351, 860–890 (2019)

    Google Scholar 

  79. Olson, J. E., Bahorich, B., Holder, J., et al.: Examining hydraulic fracture: Natural fracture interaction in hydrostone block experiments. In: SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers (2012)

  80. Perkins, T., Kern, L., et al.: Widths of hydraulic fractures. J. Petrol. Tech. 13(09), 937–949 (1961)

    Google Scholar 

  81. Plahn, S. V., Nolte, K., Miska, S.: A quantitative investigation of the fracture Pump-Ln/flowback test. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1995)

  82. Scovazzi, G., Wheeler, M. F., Mikelić, A., Lee, S.: Analytical and variational numerical methods for unstable miscible displacement flows in porous media. J. Comput. Phys. 335, 444–496 (2017)

    Google Scholar 

  83. Settari, A., Mourits, F.: A coupled reservoir and geomechanical simulation system. SPE J. 3(3), 219–226 (1998)

    Google Scholar 

  84. Settari, A., Walters, D. A.: Advances in coupled geomechanical and reservoir modeling with applications to reservoir compaction. SPE J. 6(3), 334–342 (2001)

    Google Scholar 

  85. Shiozawa, S., Lee, S., Wheeler, M. F.: The effect of stress boundary conditions on fluid-driven fracture propagation in porous media using a phase-field modeling approach. Int. J. Numer. Anal. Methods Geomech. 43(6), 1316–1340 (2019)

    Google Scholar 

  86. Shovkun, I., Espinoza, D. N.: Fracture propagation in heterogeneous porous media: Pore-scale implications of mineral dissolution. Rock Mech. Rock. Eng.:1–15 (2019)

  87. Shovkun, I., Espinoza, D. N.: Propagation of toughness-dominated fluid-driven fractures in reactive porous media. International Journal of Rock Mechanics and Mining Sciences 118, 42–51 (2019)

    Google Scholar 

  88. Sun, S., Liu, J.: A locally conservative finite element method based on piecewise constant enrichment of the continuous galerkin method. SIAM J. Sci. Comput. 31(4), 2528–2548 (2009)

    Google Scholar 

  89. Ṫene, M., Bosma, S. B., Al Kobaisi, M. S., Hajibeygi, H.: Projection-based embedded discrete fracture model (pedfm). Adv. Water Resour. 105, 205–216 (2017)

    Google Scholar 

  90. U.S. Energy Information Administration: How much shale (tight) oil is produced in the united states? (2019). https://www.eia.gov/tools/faqs/faq.php?id= 847&t = 6

  91. Wang, W., Olson, J. E., Prodanović, M.: Natural and hydraulic fracture interaction study based on semi-circular bending experiments. In: Unconventional Resources Technology Conference, pp. 1645–1652. Society of Exploration Geophysicists, American Association of Petroleum . . . (2013)

  92. Wheeler, M. F., Srinivasan, S., Lee, S., Singh, M., et al.: Unconventional reservoir management modeling coupling diffusive zone/phase field fracture modeling and fracture probability maps. In: SPE Reservoir Simulation Conference. Society of Petroleum Engineers (2019)

  93. Wheeler, M.F., Wick, T, Lee, S: IPACS: Integrated phase-field advanced crack propagation simulator. An adaptive, parallel, physics-based-discretization phasefield framework for fracture propagation in porous media. Comput. Methods Appl. Mech. Eng. 367, 113124 (2020). Elsevier

    Google Scholar 

  94. Wick, T.: Coupling fluid-structure interaction with phase-field fracture. J. Comput. Phys. 327, 67–96 (2016)

    Google Scholar 

  95. Wick, T., Lee, S., Wheeler, M.F.: 3D phase-field for pressurized fracture propagation in heterogeneous media. VI International Conference on Computational Methods for Coupled Problems in Science and Engineering 2015 Proceedings (2015)

  96. Witherspoon, P. A., Wang, J. S. Y., Iwai, K., Gale, J. E.: Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour. Res. 16(6), 1016–1024 (1980)

    Google Scholar 

  97. Wu, K., Olson, J.: Mechanics Analysis of Interaction between Hydraulic and Natural Fractures in Shale Reservoirs. In: Unconventional Resources Technology Conference, Denver, Colorado, 25-27 August 2014, pp. 1824–1841. Society of Exploration Geophysicists, American Association of Petroleum... (2014)

  98. Yoshioka, K., Parisio, F., Naumov, D., Lu, R., Kolditz, O., Nagel, T.: Comparative verification of discrete and smeared numerical approaches for the simulation of hydraulic fracturing. GEM - International Journal on Geomathematics 10(1), 13 (2019)

    Google Scholar 

  99. Zheltov, Y. P., Khristianovich, S.: On hydraulic fracturing of an oil-bearing stratum. Izv. Akad. Nauk SSSR. Otdel Tekhn. Nuk 5(3), 41 (1955)

    Google Scholar 

  100. Zhou, J., Huang, H., Deo, M., et al.: Simulation of hydraulic and natural fracture interaction using a coupled Dfn-Dem model. In: 50th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association (2016)

  101. Zimmerman, R. W., Bodvarsson, G. S.: Hydraulic conductivity of rock fractures. Transp. Porous Media 23(1), 1–30 (1996)

    Google Scholar 

Download references

Acknowledgments

S. Lee is partially supported by the National Science Foundation under Grant No. (NSF DMS-1913016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghyun Lee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Wheeler, M.F. Modeling interactions of natural and two-phase fluid-filled fracture propagation in porous media. Comput Geosci 25, 731–755 (2021). https://doi.org/10.1007/s10596-020-09975-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-020-09975-0

Keywords

Navigation