Skip to main content
Log in

Design, Validation, and Comparison of UDE-based Pitch-axis Control of Helicopter with existing Conventional and Non-conventional Controllers

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The demand for high-precision motion control method for complex systems has increased in the recent decade. The significant challenge is to achieve robustness despite insufficient knowledge about the disturbances acting on a real-time system. Uncertainty and Disturbance Estimator (UDE) method is a vital approach that takes up the challenge, ensuring stability and robustness. This paper is dedicated to highlighting the research done in the field of UDE controller applied with other well-known control methods implemented on various linear and nonlinear systems. This work aims to control the position of pitch axis of the nonlinear aerodynamic system. The phase portrait analysis of the system has been done, which reveals the trajectory and existence of limit cycle. The obtained time responses are diverging, indicating the regions of instability. The novelty lies in the formulation of UDE based controller aimed to robustify the helicopter subsystem. Closed-loop stability is analyzed to validate the controller design. Simulation results for the pitch-axis control are demonstrated to display the efficacy of UDE-based control design against uncertainty and disturbances. The methodology’s efficiency is further demonstrated by comparing the results of UDE control with \(\alpha\)-filter with a well-known fuzzy control technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhong, Q.-C.; Rees, D.: Control of uncertain LTI systems based on an uncertainty and disturbance estimator. ASME J. Dyn. Syst. Meas. Control 126, 905–910 (2004)

    Google Scholar 

  2. Escobedo-Alva, J.O.; Garcia-Estrada, E.C.; Paramo-Carranza, L.A.; Meda-Campana, J.A.; Tapia-Herrera, R.: Theoretical application of a hybrid observer on altitude tracking of quadrotor losing GPS signal. IEEE Access 6, 76900–76908 (2018)

    Google Scholar 

  3. Aguilar-Ibanez, C.; Suarez-Castanon, M.S.: A trajectory planning based controller to regulate an uncertain 3D overhead crane system. Int. J. Appl. Math. Comput. Sci. 29(4), 693–702 (2019)

    MATH  Google Scholar 

  4. Martinez, D.I.; Rubio, J.D.J.; Vargas, T.M.; Garcia, V.; Ochoa, G.; et al.: Stabilization of robots with a regulator containing the sigmoid mapping. IEEE Access (2020). https://doi.org/10.1109/access.2020.2994004

    Article  Google Scholar 

  5. Rubio, J.D.J.; Ochoa, G.; Mujica-Vargas, D.; Garcia, E.; et al.: Structure regulator for the perturbations attenuation in a quadrotor. IEEE Access 7(1), 138244–138252 (2019)

    Google Scholar 

  6. Rubio, J.D.J.; Martinez, D.I.; Garcia, V.; Gutierrez, G.J.; et al.: The perturbations estimation in two gas plants. IEEE Access 8(1), 83081–83091 (2020)

    Google Scholar 

  7. Lochan, K.; Roy, B.K.; Subudhi, B.: SMC controlled chaotic trajectory tracking of two-link flexible manipulator with PID sliding surface. Int. Fed. Autom. Control 49, 219–224 (2016)

    Google Scholar 

  8. Kumar, S.; Varma, M.S.; Rao, D.: H∞ tracking control for magnetically controlled nano-satellite. Int. Fed. Autom. Control 49(1), 166–172 (2016)

    Google Scholar 

  9. Youcef-Toumi, K.; Ito, O.: Time delay controller for systems with unknown dynamics. ASME J. Dyn. Syst. Meas. Control 112(1), 133–142 (1990)

    MATH  Google Scholar 

  10. Chen, J.; Ren, B.; Zhong, Q.-C.: Hysteresis compensation in piezoelectric actuator positioning control based on the uncertainty and disturbance estimator, In: AACC American Control Conference, pp. 2537–2542, Chicago (2015)

  11. Zhong, Q.-C.; Kuperman, A.; Stobart, S.K.: Design of UDE-based controllers from their two-degree-of-freedom nature. Int. J. Robust Nonlinear Control 21, 1994–2008 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Chandar, T.S.: Design of missile roll autopilot using uncertainty and disturbance estimator. Natl. Conv. Aerosp. Eng. 22, 15–18 (2009)

    Google Scholar 

  13. Ren, B.; Zhong, Q.-C.; Chen, J.: Robust control for a class of non-affine nonlinear systems based on uncertainty and disturbance estimator. IEEE Trans. Ind. Electron. 62(9), 5881–5888 (2015)

    Google Scholar 

  14. Kuperman, A.: UDE-based robust voltage control of DC–DC power converters. Int. Congr. Ultra Modern Telecommun. Control Syst. Workshops 09, 140–145 (2013)

    Google Scholar 

  15. Liyanage, A.L.M.; Berg, J.; Ren, B.; Maithripala, D.H.S.: Intrinsic UDE control of mechanical systems on SO(3). In: Advanced Intelligent Mechatronics, pp. 1653–1658, Busan, Korea (2015)

  16. Ren, B.; Zhong, Q.-C.: UDE-based control of variable-speed wind turbine systems. Int. J. Control 90, 3818–3823 (2015)

    MathSciNet  Google Scholar 

  17. Sanz, R.; Garcia, P.; Zhong, Q.-C.: Robust control of quadrotors based on an uncertainty and disturbance estimator. J. Dyn. Syst. Meas. Control (2016). https://doi.org/10.1115/1.4033315

    Article  Google Scholar 

  18. Raj, R.V.; Poluru, V.S.; Chandar, T.S.: Robust control of electric motor drive based on UDE. Control Power Energy Syst. IFAC 48, 37–42 (2015)

    Google Scholar 

  19. Kuperman, A.; Zhong, Q.-C.: Robust UDE-based control of uncertain nonlinear state-delay systems. Int. J. Robust Non-linear Control 21(1), 79–92 (2010)

    Google Scholar 

  20. Aharon, I.; Shmilovitz, D.; Kuperman, A.: Robust output voltage control of multi-mode non-inverting DC–DC converter. Int. J. Control 90, 110–120 (2015)

    MATH  Google Scholar 

  21. Chandrasekhar, T.; Dewan, L.: Sliding mode control based on TDC and UDE. Int. J. Inf. Syst. Sci. 3(1), 36–53 (2007)

    MATH  Google Scholar 

  22. Shendge, P.D.; Suryawanshi, P.V.; Patre, B.M.: Robust sliding mode control for systems with noise and unmodeled dynamics based on uncertainty and disturbance estimation. Int. J. Comput. Appl. 1(9), 43–48 (2010)

    Google Scholar 

  23. Zhu, Y.; Zhu, S.: Adaptive sliding mode control based on uncertainty and disturbance estimator. Math. Probl. Eng. 2014(982101), 1–11 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Suryawanshi, P.V.; Shendge, P.D.; Phadke, S.B.: Discrete sliding mode control using uncertainty and disturbance estimator. Intell. Syst. Technol. Appl. 530, 619–632 (2016)

    Google Scholar 

  25. Chu, Z.Y.; Li, J.C.; Lu, S.: The composite hierarchical control of multi-link multi-DOF space manipulator based on UDE and improved sliding mode control. ProcIMechE Part G J Aerosp. Eng. 229, 1–13 (2015)

    Google Scholar 

  26. Kuperman, A.; Zhong, Q.-C.: UDE-based linear robust control for a class of nonlinear systems with application to wing rock motion stabilization. Nonlinear Dyn. 81, 789–799 (2015)

    Google Scholar 

  27. Chandar, T.S.; Talole, S.E.: Improving the performance of UDE based controller using a new filter design. Nonlinear Dyn. 77, 753–768 (2014)

    Google Scholar 

  28. Kuperman, A.: Design of a-filter based UDE controllers considering finite control bandwidth. Nonlinear Dyn. 81, 411–416 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Kodhanda, A.; Talole, S.E.: Performance analysis of UDE-based controllers employing various filters. Int. Fed. Autom. Control 49(1), 83–88 (2016)

    Google Scholar 

  30. Godbole, A.A.; Kolhe, J.P.; Talole, S.E.: Performance analysis of generalised extended state observer in tackling sinusoidal disturbances. IEEE Trans. Control Syst. Technol. 21(6), 2212–2223 (2013)

    Google Scholar 

  31. Su, S.; Lin, Y.: Robust output tracking control of a class of nonminimum phase systems and application to VTOL aircraft. Int. J. Control 84(11), 1858–1872 (2011)

    MATH  Google Scholar 

  32. Wu, F.; Liu, Q.; Zhu, B.: Robust tracking of the flight path angle of aircraft based on UDE and IID. Intell. Comput. Technol. Autom. 5, 299–303 (2012)

    Google Scholar 

  33. Wang, Y.; Ren, B.; Zhong, Q.-C.: Robust control of DC–DC boost converters for solar systems. In: American Control Conference, pp. 5071–5076, Seattle (2017)

  34. Talole, S.E.; Singh, N.K.; Phadke, S.B.: Robust input–output linearization using UDE. In: International Conference on Advances in Control and Optimization, pp. 79–82 (2007)

  35. Talole, S.E.; Phadke, S.B.: Robust input–output linearization using uncertainty and disturbance estimation. Int. J. Control 82(10), 1794–1803 (2009)

    MATH  Google Scholar 

  36. Talole, S.E.; Chandar, T.S.; Kolhe, J.P.: Design and experimental validation of UDE based controller observer structure for robust input output linearization. Int. J. Control 84(5), 969–984 (2011)

    MATH  Google Scholar 

  37. Kodhanda, A.; Ali, N.; Sucheendran, M.M.; Talole, S.E.: Robust control of nonlinear resonance in a clamped rectangular plate. J. Vib. Control 24, 1–20 (2017)

    MathSciNet  Google Scholar 

  38. Kodhanda, A.; Kolhe, J.P.; Zeru, T.; Talole, S.E.: Robust aircraft control based on UDE theory. ProcIMechE Part G J. Aerosp. Eng. 231, 1–16 (2016)

    Google Scholar 

  39. Talole, S.E.; Phadke, S.B.; Singh, R.K.: Robust feedback linearization based control of robot manipulator. In: National Conference on Machines and Mechanisms, pp. 88–91, IIT Guwahati, India (2005)

  40. Kolhe, J.P.; Chandar, T.S.; Talole, S.E.: Extended-state-observer based control of flexible-joint system with experimental validation. IEEE Trans. Ind. Electron. 57(4), 1411–1419 (2010)

    Google Scholar 

  41. Kodhanda, A.; Kolhe, J.P.: Uncertainty and disturbance estimation based control of three-axis stabilized platform. Int. J. Latest Trends Eng Technol 3(3), 289–297 (2014)

    Google Scholar 

  42. Kuperman, A.: Uncertainty and disturbance estimator-assisted control of a two-axis active magnetic bearing. Trans. Inst. Meas. Control 38(6), 764–772 (2016)

    Google Scholar 

  43. Chen, W.H.; Ohnishi, K.; Guo, L.: Advances in disturbance/uncertainty estimation and attenuation. IEEE Trans. Ind. Electron. 62(9), 5758–5762 (2015)

    Google Scholar 

  44. Kolhe, J.P.; Shaheed, Md; Chandar, T.S.; Talole, S.E.: Robust control of robot manipulators based on uncertainty and disturbance estimation. Int. J. Robust Nonlinear Control 23, 1–19 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Yang, Y.; Du, J.; Liu, H.; Guo, C.; Abraham, A.: A trajectory tracking robust controller of surface vessels with disturbance uncertainties. IEEE Trans. Control Syst. Technol. 22(4), 1511–1518 (2014)

    Google Scholar 

  46. Kohli, C.; Neha, K.; Chandar, T.S.: Design of UDE based robust tracking controller for knee-joint orthosis. In: International Conference on Industrial and Information Systems, pp. 1–6, Sri Lanka (2017)

  47. Khanesar, M.A.; Kayacan, E.: Controlling the Pitch and Yaw Angles of a 2-DOF helicopter using interval type-2 fuzzy neural networks. Recent Adv. Sliding Modes, SSDC 24, 349–370 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Andrievsky, B.; Peaucelle, D.; Fradkov, A.L.: Adaptive control of 3DOF motion for LAAS Helicopter Benchmark: design and experiments. In: American Control Conference, pp. 3312–3317, New York City (2007)

  49. Gac, S.L.; Peaucelle, D.; Andrievsky, B.: Adaptive parameter identification for simplified 3D-motion model of ‘LAAS Helicopter Benchmark’. Robust Adapt. Control Complex Syst. Theory Appl. 40(13), 244–249 (2007)

    Google Scholar 

  50. Jin, L.; Li, S.; Yu, J.; He, J.: Robot manipulator control using neural networks: a survey. Neurocomputing 285, 23–34 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpee Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Chakraborty, S. Design, Validation, and Comparison of UDE-based Pitch-axis Control of Helicopter with existing Conventional and Non-conventional Controllers. Arab J Sci Eng 46, 909–929 (2021). https://doi.org/10.1007/s13369-020-04775-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04775-1

Keywords

Navigation