Skip to main content

Advertisement

Log in

Hybrid Manufacturing and Mechanical Characterization of Cu/PLA Composites

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Fused Deposition Modelling (FDM) is a widely used additive manufacturing process. It utilizes a variety of homogeneous and heterogeneous materials for product development. A new manufacturing process termed as Hybrid Fused Deposition Modelling (HFDM) has been used for the manufacture of various copper metal mesh (99.99% pure)/PLA (polylactic acid or polylactide) plastic composites. These products have been subjected to standardized experimental testing for evaluating properties such as tear resistance, tensile strength, water absorption, hardness, and flexural strength. The tests have been conducted to analyse the effectiveness of the HFDM process in manufacturing stronger composites compared to commercially available PLA and copper-infused PLA. Microstructural characterization has also been carried out to analyse the bond between the plastic and metal mesh layers. The results have been promising and demonstrate the effectiveness of HFDM to produce Cu/PLA composites with superior mechanical properties compared to parent FDM-printed PLA plastic as well as copper-infused FDM-printed PLA. Multiple copper mesh layers have been placed strategically within the test specimens to study their effect on the composites made by HFDM. The experimental results show that the process is capable of manufacturing high-quality composites (Cu/PLA) with tailored properties for various engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Zhang, X.; Chueh, Y.H.; Wei, C.; Sun, Z.; Yan, J.; Li, L.: Additive manufacturing of three-dimensional metal-glass functionally gradient material components by laser powder bed fusion with in situ powder mixing. Addit. Manuf. 2020(33), 101113 (2020)

    Google Scholar 

  2. Wu, H.; Fahy, W.; Kim, S.; Kim, H.; Zhao, N.; Pilato, L.; Kafi, A.; Bateman, S.; Koo, J.H.: Recent developments in polymers/polymer nanocomposites for additive manufacturing. Prog. Mater Sci. 1, 100638 (2010)

    Google Scholar 

  3. Butt, J.; Mebrahtu, H.; Shirvani, H.: Numerical and experimental analysis of product development by composite metal foil manufacturing. Int. J. Rapid Manuf. 7(1), 59–82 (2018)

    Article  Google Scholar 

  4. Butt, J.; Mebrahtu, H.; Shirvani, H.: Microstructure and mechanical properties of dissimilar pure copper foil/1050 aluminium composites made with composite metal foil manufacturing. J. Mater. Process. Technol. 238, 96–107 (2016)

    Article  Google Scholar 

  5. Nieto, A.; Bisht, A.; Lahiri, D.; Zhang, C.; Agarwal, A.: Graphene reinforced metal and ceramic matrix composites: a review. Int. Mater. Rev. 62(5), 241–302 (2017)

    Article  Google Scholar 

  6. Singh, R.; Kumar, R.; Feo, L.; Fraternali, F.: Friction welding of dissimilar plastic/polymer materials with metal powder reinforcement for engineering applications. Compos. B Eng. 101, 77–86 (2016)

    Article  Google Scholar 

  7. Duc, F.; Bourban, P.E.; Plummer, C.J.; Månson, J.A.: Damping of thermoset and thermoplastic flax fibre composites. Compos. A Appl. Sci. Manuf. 64, 115–123 (2014)

    Article  Google Scholar 

  8. Stavrov, D.; Bersee, H.E.: Resistance welding of thermoplastic composites-an overview. Compos. A Appl. Sci. Manuf. 36(1), 39–54 (2005)

    Article  Google Scholar 

  9. Biron, M.: Thermoplastics and Thermoplastic Composites. William Andrew, Burlington (2018)

    Google Scholar 

  10. Butt, J.; Onimowo, D.A.; Gohrabian, M.; Sharma, T.; Shirvani, H.: A desktop 3D printer with dual extruders to produce customised electronic circuitry. Front. Mech. Eng. 13(4), 528–534 (2018)

    Article  Google Scholar 

  11. Butt, J.; Mebrahtu, H.; Shirvani, H.: Production of multiple material parts using a desktop 3D printer. In: Advances in Manufacturing Technology XXXI: Proceedings of the 15th International Conference on Manufacturing Research, Incorporating the 32nd National Conference on Manufacturing Research, September 5–7, 2017, University of Greenwich, UK, vol. 6. IOS Press, pp. 148–153 (2017). https://doi.org/10.3233/978-1-61499-792-4-148.

  12. Butt, J.; Shirvani, H.: Additive, subtractive, and hybrid manufacturing processes. In: Advances in Manufacturing and Processing of Materials and Structures. CRC Press, pp. 187–218 (2018).

  13. Butt, J.; Mebrahtu, H.; Shirvani, H.: Metal rapid prototyping technologies. In: Petrova, V.M. (ed.) Advances in Engineering Research, vol. 14, pp. 13–52. Nova Science Publishers, New York (2017)

    Google Scholar 

  14. Zhong, W.; Li, F.; Zhang, Z.; Song, L.; Li, Z.: Short fiber reinforced composites for fused deposition modeling. Mater. Sci. Eng. A 301(2), 125–130 (2001)

    Article  Google Scholar 

  15. Shofner, M.L.; Lozano, K.; Rodríguez-Macías, F.J.; Barrera, E.V.: Nanofiber-reinforced polymers prepared by fused deposition modeling. J. Appl. Polym. Sci. 89(11), 3081–3090 (2003)

    Article  Google Scholar 

  16. Singh, R.; Singh, S.; Mankotia, K.: Development of ABS based wire as feedstock filament of FDM for industrial applications. Rapid Prototyp. J. 22(2), 300–310 (2016)

    Article  Google Scholar 

  17. Gray IV, R.W.; Baird, D.G.; Helge, Bøhn J.: Effects of processing conditions on short TLCP fiber reinforced FDM parts. Rapid Prototyp. J. 4(1), 14–25 (1998)

    Article  Google Scholar 

  18. Li, N.; Li, Y.; Liu, S.: Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. J. Mater. Process. Technol. 238, 218–225 (2016)

    Article  Google Scholar 

  19. Van Der Klift, F.; Koga, Y.; Todoroki, A.; Ueda, M.; Hirano, Y.; Matsuzaki, R.: 3D printing of continuous carbon fibre reinforced thermo-plastic (CFRTP) tensile test specimens. Open J. Compos. Mater. 6(1), 18–27 (2016)

    Article  Google Scholar 

  20. Lu, Y.; Poh, G.K.; Gleadall, A.; Zhao, L.; Han X.: Fabrication of the continuous carbon fiber reinforced plastic composites by additive manufacturing.

  21. Butt, J.; Shirvani, H.: Experimental analysis of metal/plastic composites made by a new hybrid method. Addit. Manuf. 22, 216–222 (2018)

    Google Scholar 

  22. BS 2782-3: Method 360C: 1991: Methods of testing Plastics—Part 3: Mechanical properties—Method 360C: Determination of Tear Resistance of Plastics Film and Sheeting by the Initiation Method. London, UK, British Standard (2010)

    Google Scholar 

  23. BS EN ISO 527-2: Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics, p. 2012. British, European and International Standard, London, UK (2012)

    Google Scholar 

  24. BS EN ISO 62: Plastics—Determination of Water Absorption, p. 2008. British, European and International Standard, London (2008)

    Google Scholar 

  25. BS EN ISO 178: Plastics—Determination of Flexural Properties, p. 2011. British, European and International Standard, London, UK (2019)

    Google Scholar 

  26. BS EN ISO 2039-2: 2000 BS 2782-3: Method 365C:1992. Plastics—Determination of hardness—Part 2: Rockwell Hardness. British, European and International Standard: London, UK, 2000.

  27. Torres, J.; Cotelo, J.; Karl, J.; Gordon, A.P.: Mechanical property optimization of FDM PLA in shear with multiple objectives. JOM 67(5), 1183–1193 (2015)

    Article  Google Scholar 

  28. Ning, F.; Cong, W.; Qiu, J.; Wei, J.; Wang, S.: Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. B Eng. 80, 369–378 (2015)

    Article  Google Scholar 

  29. Shaffer, S.; Yang, K.; Vargas, J.; Di Prima, M.A.; Voit, W.: On reducing anisotropy in 3D printed polymers via ionizing radiation. Polymer 55(23), 5969–5979 (2014)

    Article  Google Scholar 

  30. Jansen, J.: Plastic failure through molecular degradation: multiple mechanisms can attack polymer chains—here’s what can go wrong. Plast. Eng. 71(1), 34–39 (2015)

    Article  Google Scholar 

  31. Siparsky, G.L.; Voorhees, K.J.; Miao, F.: Hydrolysis of polylactic acid (PLA) and polycaprolactone (PCL) in aqueous acetonitrile solutions: autocatalysis. J. Environ. Polym. Degrad. 6(1), 31–41 (1998)

    Article  Google Scholar 

  32. Ayrilmis, N.; Kariz, M.; Kwon, J.H.; Kuzman, M.K.: Effect of printing layer thickness on water absorption and mechanical properties of 3D-printed wood/PLA composite materials. Int. J. Adv. Manuf. Technol. 102(5–8), 2195–2200 (2019)

    Article  Google Scholar 

  33. Yew, G.H.; Yusof, A.M.; Ishak, Z.M.; Ishiaku, U.S.: Water absorption and enzymatic degradation of poly (lactic acid)/rice starch composites. Polym. Degrad. Stab. 90(3), 488–500 (2005)

    Article  Google Scholar 

  34. Liu, A.F.: Mechanics and mechanisms of fracture: an introduction. ASM International, Cleveland (2005)

    Book  Google Scholar 

  35. Song, Y.; Li, Y.; Song, W.; Yee, K.; Lee, K.Y.; Tagarielli, V.L.: Measurements of the mechanical response of unidirectional 3D-printed PLA. Mater. Des. 123, 154–164 (2017)

    Article  Google Scholar 

  36. Pei, E.; Lanzotti, A.; Grasso, M.; Staiano, G.; Martorelli, M.: The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyp. J. 21, 1 (2015)

    Article  Google Scholar 

  37. Zurita Hurtado, O.J.; Di Graci Tiralongo, V.C.; Aguirre, C.; Cristina, M.: Effect of surface hardness and roughness produced by turning on the torsion mechanical properties of annealed AISI 1020 steel. Revista Facultad de Ingeniería Universidad de Antioquia. 84, 55–59 (2017)

    Article  Google Scholar 

  38. Lawn, B.R.; Howes, V.R.: Elastic recovery at hardness indentations. J. Mater. Sci. 16(10), 2745–2752 (1981)

    Article  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javaid Butt.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butt, J., Oxford, P., Sadeghi-Esfahlani, S. et al. Hybrid Manufacturing and Mechanical Characterization of Cu/PLA Composites. Arab J Sci Eng 45, 9339–9356 (2020). https://doi.org/10.1007/s13369-020-04778-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04778-y

Keywords

Navigation