Skip to main content
Log in

A fully stabilized low-phase-noise Kerr-lens mode-locked Yb:CYA laser frequency comb with an average power of 1.5 W

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report a fully stabilized self-referenced all-solid-state-laser frequency comb based on a home-built Kerr-lens mode-locked Yb:CaYAlO4 oscillator, which delivers ultrafast pulses with a pulse duration of 54 fs and an average power of 1.5 W. Free running carrier-envelope phase offset frequency (fceo) is observed with a signal to noise ratio of 40 dB at 100 kHz resolution bandwidth, which is phase-locked to a microwave frequency synthesizer with a residual phase jitter of 370 mrad [1 Hz–1 MHz] and with a standard frequency deviation of 0.8 mHz at 1-s gate time within 3-h, corresponding to the relative frequency instability of 2.9 × 10−18 at 1-s average time. It is the lowest phase noise and the highest frequency stability of fceo obtained in a watt-level all-solid-state bulk laser frequency comb to the best of our knowledge. A 13th repetition rate is simultaneously phase-locked to the same microwave standard with a frequency instability level of 10−12 at 1 s average time. Such fully stabilized power scaling Yb: CaYAlO4 laser frequency combs have great potential for applications in broadband dual comb spectroscopy as well as high loss cases such as long-distance time and frequency transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Ma, H. Huang, K, Ning, X. Xu, G. Xie, L. Qian, K.P. Loh, D.Tang, Generation of 30  fs pulses from a diode-pumped graphene mode-locked Yb:CaYAlO4 laser. Opt. Lett. 41, 890–893 (2016)

  2. T. Udem, R. Holzwarth, T.W. Hänsch, Nature 416, 233 (2002)

    Article  ADS  Google Scholar 

  3. N. Picqué, T.W. Hänsch, Nat. Photon. 13, 146 (2019)

    Article  ADS  Google Scholar 

  4. A. Cingöz, D.C. Yost, T.K. Allison, A. Ruehl, M.E. Fermann, I. Hartl, J. Ye, Nature 482, 68 (2012)

    Article  ADS  Google Scholar 

  5. G. Porat, C.M. Heyl, S.B. Schoun, C. Benko, N. Dörre, K.L. Corwin, J. Ye, Nat. Photon. 12, 387 (2018)

    Article  ADS  Google Scholar 

  6. A. Schliesser, N. Picqué, T.W. Hänsch, Nat. Photon. 6, 440–449 (2012)

    Article  ADS  Google Scholar 

  7. G. Ycas, F.R. Giorgetta, E. Baumann, I. Coddington, D. Herman, S.A. Diddams, N.R. Newbury, Nat. Photon. 12, 202 (2018)

    Article  ADS  Google Scholar 

  8. K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui, T. Iwata, Opt. Express 25, 21947 (2017)

    Article  ADS  Google Scholar 

  9. F.R. Giorgetta, W.C. Swann, L.C. Sinclair, E. Baumann, I. Coddington, N.R. Newbury, Nat. Photon. 7, 434 (2013)

    Article  ADS  Google Scholar 

  10. F. Riehle, Nat. Photon. 11, 25 (2017)

    Article  ADS  Google Scholar 

  11. A. Ruehl, A. Marcinkevicius, M.E. Fermann, I. Hartl, Opt. Lett. 35, 3015 (2010)

    Article  ADS  Google Scholar 

  12. H. Fattahi, H.G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C.Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, Optica 1, 45 (2014)

    Article  ADS  Google Scholar 

  13. N. Modsching, C. Paradis, P. Brochard, N. Jornod, K. Gürel, C. Kränkel, S. Schilt, V.J. Wittwer, T. Südmeyer, Opt. Express 26, 28461 (2018)

    Article  ADS  Google Scholar 

  14. S. Gröbmeyer, J. Brons, M. Seidel, O. Pronin, Las. Photon. Rev. 13, 1800256 (2019)

    Article  ADS  Google Scholar 

  15. H. Zhao, A. Major, Opt. Express 22, 30425 (2014)

    Article  ADS  Google Scholar 

  16. W. Tian, Y. Peng, Z. Zhang, Z. Yu, J. Zhu, X. Xu, Z. Wei, Photon. Res. 6, 127 (2018)

    Article  Google Scholar 

  17. A. Klenner, M. Golling, U. Keller, Opt. Express 22, 11884 (2014)

    Article  ADS  Google Scholar 

  18. T. Balčiūnas, O.D. Mücke, P. Mišeikis, G. Andriukaitis, A. Pugžlys, L. Giniūnas, R. Danielius, R. Holzwarth, A. Baltuška, Opt. Lett. 36, 3242 (2011)

    Article  ADS  Google Scholar 

  19. S.A. Meyer, T.M. Fortier, S. Lecomte, S.A. Diddams, Appl. Phys. B 112, 565 (2013)

    Article  ADS  Google Scholar 

  20. D. Li, X. Xu, H. Zhu, X. Chen, W.D. Tan, J. Zhang, D. Tang, J. Ma, F. Wu, C. Xia, J. Xu, J. Opt. Soc. Am. B 28, 1650 (2011)

    Article  ADS  Google Scholar 

  21. J. Ma, H.J. Ma, H. Huang, K. Ning, X. Xu, G. Xie, L. Qian, K. Ping Loh, D. Tang, Opt. Lett. 41, 890 (2016)

    Article  ADS  Google Scholar 

  22. W. Tian, C. Yu, J. Zhu, D. Zhang, Z. Wei, X. Xu, J. Xu, Opt. Express 27, 21448 (2019)

    Article  ADS  Google Scholar 

  23. Z. Zhang, H. Han, H. Wang, X. Shao, S. Fang, Z. Wei, Opt. Lett. 44, 22 (2019)

    Google Scholar 

  24. S. Hakobyan, V.J. Wittwer, P. Brochard, K. Gürel, S. Schilt, A.S. Mayer, U. Keller, T. Südmeyer, Opt. Express 25, 20437 (2017)

    Article  ADS  Google Scholar 

  25. G. Genty, S. Coen, J.M. Dudley, J. Opt. Soc. Am. B 24, 1771 (2007)

    Article  ADS  Google Scholar 

  26. B. Borchers, A. Anderson, G. Steinmeyer, Las. Photon. Rev. 8, 303 (2014)

    Article  ADS  Google Scholar 

  27. N.R. Newbury, B.R. Washburn, IEEE J. Quantum Electron. 41, 1388 (2005)

    Article  ADS  Google Scholar 

  28. N. Raabe, T. Feng, M. Mero, H. Tian, Y. Song, W. Hänsel, R. Holzwarth, A. Sell, A. Zach, G. Steinmeyer, Opt. Lett. 42, 1068 (2017)

    Article  ADS  Google Scholar 

  29. G. Di Domenico, S. Schilt, P. Thomann, Appl. Opt. 49, 4801 (2010)

    Article  ADS  Google Scholar 

  30. N. Torcheboeuf, G. Buchs, S. Kundermann, E. Portuondo-Campa, J. Bennès, S. Lecomte, Opt. Express 25, 2215 (2017)

    Article  ADS  Google Scholar 

  31. T. Nakamura, S. Tani, I. Ito, M. Endo, Y. Kobayashi, Opt. Express 28, 16118 (2020)

    Article  ADS  Google Scholar 

  32. S. Koke, C. Grebing, H. Frei, A. Andderson, A. Assion, G. Steinmeyer, Nat. Photon. 4, 462–465 (2010)

    Article  ADS  Google Scholar 

  33. X.D. Shao, H.N. Han, Y.B. Su, H.B. Wang, Z.Y. Zhang, S.B. Fang, G.Q. Chang, Z.Y. Wei, AIP Adv. 9, 11 (2019)

    Google Scholar 

  34. Z. Chen, M. Yan, T.W. Hansch, N. PicqueChen, Nat. Commun. 9, 1 (2018)

    Article  Google Scholar 

  35. Z. Chen, T.W. Hansch, N. Picque, Proc. Natl. Acad. Sci. USA. 116(9), 3454–3459 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The Strategic Priority Research Program of the Chinese Academy of Sciences (XDA1502040404, XDB21010400); The National Natural Science Foundation of China (NSFC) (91850209, 11434016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hainian Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Han, H., Tian, W. et al. A fully stabilized low-phase-noise Kerr-lens mode-locked Yb:CYA laser frequency comb with an average power of 1.5 W. Appl. Phys. B 126, 134 (2020). https://doi.org/10.1007/s00340-020-07485-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07485-6

Navigation