Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A simple sperm-sexing method that activates TLR7/8 on X sperm for the efficient production of sexed mouse or cattle embryos

Abstract

The preferred sex of livestock differs among breeders; for example, dairy farmers prefer female calves for the production of milk, whereas cattle meat producers often prefer males. Sexing of laboratory animals is also beneficial in some research fields, including reproductive biology and metabolic studies. Most sexing methods separate X sperm and Y sperm with a cell sorter. Here, we describe a system in which treatment with the TLR7/8 ligand (R848) separates X sperm from Y sperm. Because this protocol does not require any special equipment or professional skills, it can be easily applied in laboratories where in vitro fertilization (IVF) is performed. The sperm are treated with 0.03 µM R848 in 1 mL of modified human tubal fluid (mHTF) medium (mouse sperm) or 3 mL of mHTF medium (bull sperm) for 60 min, and then the upper layer (400 µL in mouse sperm or 1 mL in bull sperm) and the precipitate are separately collected. After each sample is washed by centrifugation, the sperm are suspended in ligand-free IVF medium and can then be used for IVF. More than 90% of the embryos made with upper-layer sperm are XY in both mice and cattle, and >80% of the embryos made with precipitated sperm are XX in both species. Separation of X sperm and Y sperm for IVF can be completed within 2 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of R848 on sperm with different glucose concentrations.
Fig. 2: Effect of washing after sperm separation by R848 on the successful fertilization rate.
Fig. 3: The addition of creatine increases the swim-up ratio, fertilization ability and ratio of successful XY embryo production.
Fig. 4: The expression of TLR7 in murine sperm before/after treatment with R848.
Fig. 5: Expression of TLR7 in frozen bull sperm.
Fig. 6: Effect of R848 on frozen−thawed bull sperm.
Fig. 7: The effects of different R848 solvents, water and DMSO, on sperm motility.
Fig. 8: Overview of a novel frozen–thawed bull sperm separation method using R848.
Fig. 9: Overview of a novel mouse sperm separation method using R848.
Fig. 10: Method for collection of mouse sperm.
Fig. 11: Method for the collection of mouse COCs.

Similar content being viewed by others

Data availability

All raw data except those from the flow cytometry are available at Figshare (https://doi.org/10.6084/m9.figshare.12152712), and in the Supplementary Data. Other data are available on request from the authors.

References

  1. Seidel, G. E. Sexing mammalian sperm – intertwining of commerce, technology, and biology. Anim. Reprod. Sci. 79, 145–156 (2003).

    PubMed  Google Scholar 

  2. Seidel, G. E. Overview of sexing sperm. Theriogenology 68, 443–446 (2007).

    PubMed  Google Scholar 

  3. Naniwa, Y., Sakamoto, Y., Toda, S. & Uchiyama, K. Bovine sperm sex-selection technology in Japan. Reprod. Med. Biol. 18, 17–26 (2019).

    CAS  PubMed  Google Scholar 

  4. Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tsien, J. Z. et al. Subregion- and cell type-restricted gene knockout in mouse brain. Cell 87, 1317–1326 (1996).

    CAS  PubMed  Google Scholar 

  6. Handyside, A. H. et al. Biopsy of human preimplantation embryos and sexing by DNA amplification. Lancet 333, 347–349 (1989).

    Google Scholar 

  7. Bradbury, M. W., Isola, L. M. & Gordon, J. W. Enzymatic amplification of a Y chromosome repeat in a single blastomere allows identification of the sex preimplantation mouse embryos. Proc. Natl Acad. Sci. USA 87, 4053–4057 (1990).

    CAS  PubMed  Google Scholar 

  8. Peura, T., Hyttinen, J. M., Turunen, M. & Jänne, J. A reliable sex determination assay for bovine preimplantation embryos using the polymerase chain reaction. Theriogenology 35, 547–555 (1991).

    CAS  PubMed  Google Scholar 

  9. Rao, K. B. & Totey, S. M. Sex determination in sheep and goats using bovine Y-chromosome specific primers via polymerase chain reaction: potential for embryo sexing. Indian J. Exp. Biol. 30, 775–777 (1992).

    CAS  PubMed  Google Scholar 

  10. Pomp, D., Good, B. A., Geisert, R. D., Corbin, C. J. & Conley, A. J. Sex identification in mammals with polymerase chain reaction and its use to examine sex effects on diameter of day-10 or -11 pig embryos. J. Anim. Sci. 73, 1408–1415 (1995).

    CAS  PubMed  Google Scholar 

  11. Johnson, L. A. & Clarke, R. N. Flow sorting of X and Y chromosome-bearing mammalian sperm: activation and pronuclear development of sorted bull, boar, and ram sperm microinjected into hamster oocytes. Gamete Res 21, 335–343 (1988).

    CAS  PubMed  Google Scholar 

  12. Garner, D. L., Evans, K. M. & Seidel, G. E. Sex-sorting sperm using flow cytometry/cell sorting. Spermatogenesis 279–295 (Humana Press, 2013).

  13. Garner, D. L. et al. Quantification of the X- and Y-chromosome-bearing spermatozoa of domestic animals by flow cytometry. Biol. Reprod. 28, 312–321 (1983).

    CAS  PubMed  Google Scholar 

  14. Lindsey, A. C. et al. Hysteroscopic insemination of mares with low numbers of nonsorted or flow sorted spermatozoa. Equine Vet. J. 34, 128–132 (2002).

    CAS  PubMed  Google Scholar 

  15. Parrilla, I., Vazquez, J., Roca, J. & Martinez, E. Flow cytometry identification of X- and Y-chromosome-bearing goat spermatozoa. Reprod. Domest. Anim. 39, 58–60 (2004).

    CAS  PubMed  Google Scholar 

  16. Oi, M., Yamada, K., Hayakawa, H. & Suzuki, H. Sexing of dog sperm by fluorescence in situ hybridization. J. Reprod. Dev. 59, 92 (2012).

    PubMed  PubMed Central  Google Scholar 

  17. Pope, C. E., Crichton, E. G., Gómez, M. C., Dumas, C. & Dresser, B. L. Birth of domestic cat kittens of predetermined sex after transfer of embryos produced by in vitro fertilization of oocytes with flow-sorted sperm. Theriogenology 71, 864–871 (2009).

    CAS  PubMed  Google Scholar 

  18. Gao, Q. H. et al. Flow cytometric sexing of X- and Y-chromosome-bearing sperm in Sika deer (Cervus nippon). Small Rumin. Res 81, 100–104 (2009).

    Google Scholar 

  19. Gao, Q. H. et al. Successful low dose insemination of flow cytometrically sorted Sika (Cervus nippon) sperm in Wapiti (Cervus elaphus). Anim. Reprod. Sci. 118, 89–93 (2010).

    CAS  PubMed  Google Scholar 

  20. O’Brien, J. K. & Robeck, T. R. Development of sperm sexing and associated assisted reproductive technology for sex preselection of captive bottlenose dolphins (Tursiops truncatus). Reprod. Fertil. Dev. 18, 319 (2006).

    PubMed  Google Scholar 

  21. Lu, Y. Q. et al. Identification of X- and Y-chromosome bearing buffalo (Bubalus bubalis) sperm. Anim. Reprod. Sci. 95, 158–164 (2006).

    CAS  PubMed  Google Scholar 

  22. Rens, W., Welch, G. R. & Johnson, L. A. Improved flow cytometric sorting of X- and Y-chromosome bearing sperm: substantial increase in yield of sexed semen. Mol. Reprod. Dev. 52, 50–56 (1999).

    CAS  Google Scholar 

  23. Johnson, L. A. & Welch, G. R. Sex preselection: high-speed flow cytometric sorting of X and Y sperm for maximum efficiency. Theriogenology 52, 1323–1341 (1999).

    CAS  PubMed  Google Scholar 

  24. Carvalho, J. O., Sartori, R., Machado, G. M., Mourão, G. B. & Dode, M. A. N. Quality assessment of bovine cryopreserved sperm after sexing by flow cytometry and their use in in vitro embryo production. Theriogenology 74, 1521–1530 (2010).

    CAS  PubMed  Google Scholar 

  25. Buchanan, B. R. et al. Insemination of mares with low numbers of either unsexed or sexed spermatozoa. Theriogenology 53, 1333–1344 (2000).

    CAS  PubMed  Google Scholar 

  26. Johnson, L. A., Rath, D., Vazquez, J. M., Maxwell, W. M. C. & Dobrinsky, J. R. Preselection of sex of offspring in swine for production: current status of the process and its application. Theriogenology 63, 615–624 (2005).

    PubMed  Google Scholar 

  27. Johnson, L. A., Flook, J. P. & Hawk, H. W. Sex preselection in rabbits: live births from X and Y sperm separated by DNA and cell sorting. Biol. Reprod. 41, 199–203 (1989).

    CAS  PubMed  Google Scholar 

  28. Foote, R. H. The history of artificial insemination. J. Anim. Sci. 80, 1–10 (2010).

    Google Scholar 

  29. Knox, R. V. Artificial insemination in pigs today. Theriogenology 85, 83–93 (2016).

    CAS  PubMed  Google Scholar 

  30. Woods, J. et al. Effect of intrauterine treatment with prostaglandin E2 prior to insemination of mares in the uterine horn or body. Theriogenology 53, 1827–1836 (2000).

    CAS  PubMed  Google Scholar 

  31. Morris, L. H. A., Tiplady, C. & Allen, W. R. Pregnancy rates in mares after a single fixed time hysteroscopic insemination of low numbers of frozen-thawed spermatozoa onto the uterotubal junction. Equine Vet. J. 35, 197–201 (2003).

    CAS  PubMed  Google Scholar 

  32. Zucchi, I. et al. Transcription map of Xq27: candidates for several X-linked diseases. Genomics 57, 209–218 (1999).

    CAS  PubMed  Google Scholar 

  33. Deveraux, Q. L., Takahashi, R., Salvesen, G. S. & Reed, J. C. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388, 300–304 (1997).

    CAS  PubMed  Google Scholar 

  34. Mason, P. J. et al. Human hexose-6-phosphate dehydrogenase (glucose 1-dehydrogenase) encoded at 1p36: coding sequence and expression. Blood Cells Mol. Dis. 25, 30–37 (1999).

    CAS  PubMed  Google Scholar 

  35. Foster, J. W. et al. Evolution of sex determination and the Y chromosome: SRY-related sequences in marsupials. Nature 359, 531–533 (1992).

    CAS  PubMed  Google Scholar 

  36. Braun, R. E., Behringer, R. R., Peschon, J. J., Brinster, R. L. & Palmiter, R. D. Genetically haploid spermatids are phenotypically diploid. Nature 337, 373–376 (1989).

    CAS  PubMed  Google Scholar 

  37. Jasin, M. & Zalamea, P. Analysis of Escherichia coli β-galactosidase expression in transgenic mice by flow cytometry of sperm. Proc. Natl Acad. Sci. USA 89, 10681–10685 (1992).

    CAS  PubMed  Google Scholar 

  38. Greenbaum, M. P. et al. TEX14 is essential for intercellular bridges and fertility in male mice. Proc. Natl Acad. Sci. USA 103, 4982–4987 (2006).

    CAS  PubMed  Google Scholar 

  39. Greenbaum, M. P., Ma, L. & Matzuk, M. M. Conversion of midbodies into germ cell intercellular bridges. Dev. Biol. 305, 389–396 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Iwamori, T. et al. TEX14 interacts with CEP55 to block cell abscission. Mol. Cell. Biol. 30, 2280–2292 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dym, M. & Fawcett, D. W. Further observations on the numbers of spermatogonia, spermatocytes, and spermatids connected by intercellular bridges in the mammalian testis. Biol. Reprod. 4, 195–215 (1971).

    CAS  PubMed  Google Scholar 

  42. Namekawa, S. H. et al. Postmeiotic sex chromatin in the male germline of mice. Curr. Biol. 16, 660–667 (2006).

    CAS  PubMed  Google Scholar 

  43. Reynard, L. N. et al. Expression analysis of the mouse multi-copy X-linked gene Xlr-related, meiosis-regulated (Xmr), reveals that Xmr encodes a spermatid-expressed cytoplasmic protein, SLX/XMR1. Biol. Reprod. 77, 329–335 (2007).

    CAS  PubMed  Google Scholar 

  44. Cocquet, J. et al. The multicopy gene Sly represses the sex chromosomes in the male mouse germline after meiosis. PLoS Biol. 7, e1000244 (2009).

    PubMed  PubMed Central  Google Scholar 

  45. Kruger, A. N. et al. A neofunctionalized X-linked ampliconic gene family is essential for male fertility and equal sex ratio in mice. Curr. Biol. 29, 3699–3706.e5 (2019).

    CAS  PubMed  Google Scholar 

  46. Rathje, C. C. et al. Differential sperm motility mediates the sex ratio drive shaping mouse sex chromosome evolution. Curr. Biol. 29, 3692–3698.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sarkar, S., Jolly, D. J., Friedmann, T. & Jones, O. W. Swimming behavior of X and Y human sperm. Differentiation 27, 120–125 (1984).

    CAS  PubMed  Google Scholar 

  48. Shettles, L. B. Factors influencing sex ratios. Int. J. Gynecol. Obstet. 8, 643–647 (1970).

    Google Scholar 

  49. Oyeyipo, I. P., van der Linde, M. & du Plessis, S. S. Environmental exposure of sperm sex-chromosomes: a gender selection technique. Toxicol. Res 33, 315–323 (2017).

    CAS  PubMed  Google Scholar 

  50. Umehara, T., Tsujita, N. & Shimada, M. Activation of Toll-like receptor 7/8 encoded by the X chromosome alters sperm motility and provides a novel simple technology for sexing sperm. PLOS Biol. 17, e3000398 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gohil, V. M. et al. Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis. Nat. Biotechnol. 28, 249–255 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Potter, M., Newport, E. & Morten, K. J. The Warburg effect: 80 years on. Biochem. Soc. Trans. 44, 1499–1505 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhu, Z. et al. Gene expression and protein synthesis in mitochondria enhance the duration of high-speed linear motility in boar sperm. Front. Physiol. 10, 252 (2019).

    PubMed  PubMed Central  Google Scholar 

  54. Winet, H., Bernstein, G. S. & Head, J. Observations on the response of human spermatozoa to gravity, boundaries and fluid shear. J. Reprod. Fertil. 70, 511–523 (1984).

    CAS  PubMed  Google Scholar 

  55. Shimada, M., Hernandez-Gonzalez, I., Gonzalez-Robanya, I. & Richards, J. S. Induced expression of pattern recognition receptors in cumulus oocyte complexes: novel evidence for innate immune-like functions during ovulation. Mol. Endocrinol. 20, 3228–3239 (2006).

    CAS  PubMed  Google Scholar 

  56. Shimada, M. et al. Hyaluronan fragments generated by sperm-secreted hyaluronidase stimulate cytokine/chemokine production via the TLR2 and TLR4 pathway in cumulus cells of ovulated COCs, which may enhance fertilization. Development 135, 2001–2011 (2008).

    CAS  PubMed  Google Scholar 

  57. Umehara, T., Kawai, T., Goto, M., Richards, J. S. & Shimada, M. Creatine enhances the duration of sperm capacitation: a novel factor for improving in vitro fertilization with small numbers of sperm. Hum. Reprod. 33, 1117–1129 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Burden, S. Acetylcholine receptors at the neuromuscular junction: developmental change in receptor turnover. Dev. Biol. 61, 79–85 (1977).

    CAS  PubMed  Google Scholar 

  59. Olds-Clarke, P. Motility characteristics of sperm from the uterus and oviducts of female mice after mating to congenic males differing in sperm transport and fertility. Biol. Reprod. 34, 453–467 (1986).

    CAS  PubMed  Google Scholar 

  60. Suarez, S. S. Sperm transport and motility in the mouse oviduct: observations in situ. Biol. Reprod. 36, 203–210 (1987).

    CAS  PubMed  Google Scholar 

  61. Okazaki, T., Yoshida, S., Teshima, H. & Shimada, M. The addition of calcium ion chelator, EGTA to thawing solution improves fertilizing ability in frozen–thawed boar sperm. Anim. Sci. J. 82, 412–419 (2011).

    CAS  PubMed  Google Scholar 

  62. Parati, K., Bongioni, G., Aleandri, R. & Galli, A. Sex ratio determination in bovine semen: a new approach by quantitative real time PCR. Theriogenology 66, 2202–2209 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Livestock Promotional Funds of the Japan Racing Association (JRA) and by the Hiroshima Cryopreservation Service Co. (M.S.).

Author information

Authors and Affiliations

Authors

Contributions

T.U., N.T., Z.Z. and M.S. developed this protocol. Bovine IVF was performed by M.I. T.U. made the figures and wrote the manuscript. M.S. supervised all aspects of this study and wrote the manuscript

Corresponding author

Correspondence to Masayuki Shimada.

Ethics declarations

Competing interests

Hiroshima University and Oita Prefecture have filed a provisional patent application on the mammalian sperm sexing technique using TLR7/8 ligands; the inventors on this application are T.U., M.I. and M.S.

Additional information

Peer review information Nature Protocols thanks Manuel Hidalgo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Umehara, T., Tsujita, N. & Shimada, M. et al. PLoS Biol. 17, e3000398 (2019): https://doi.org/10.1371/journal.pbio.3000398

Supplementary information

Supplementary Information

Supplementary Method, Supplementary Table 1 and Supplementary Fig. 1.

Reporting Summary

Supplementary Data

All individual numerical values that underlie the summary data that are shown in the figures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umehara, T., Tsujita, N., Zhu, Z. et al. A simple sperm-sexing method that activates TLR7/8 on X sperm for the efficient production of sexed mouse or cattle embryos. Nat Protoc 15, 2645–2667 (2020). https://doi.org/10.1038/s41596-020-0348-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-0348-y

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research