Skip to main content
Log in

Plasma Parameters and Kinetics of Active Particles in the Mixture CHF3 + O2 + Ar

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The effect of the O2/Ar component ratio in the CHF3 + O2 + Ar mixture on the electrical parameters of the plasma, kinetics of active particles, and their stationary concentrations under the high-frequency (13.56 MHz) induction discharge is investigated. Using jointly the plasma diagnostics and simulation techniques, (i) features of the plasma composition in the oxygen-free system CHF3 + Ar are found, (ii) the effect of oxygen on the stationary concentrations of active particles is established via the kinetics of processes under the electron impact and the reaction of the atom–molecule interaction, and (iii) a simulation analysis of the kinetics of heterogeneous processes (etching, polymerization, and destruction of a polymer film), which determine the etching mode and output characteristics, is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Wolf, S. and Tauber, R.N., Silicon Processing for the VLSI Era, Vol. 1: Process Technology, New York: Lattice, 2000.

    Google Scholar 

  2. Rooth, J.R., Industrial Plasma Engineering, Philadelphia: IOP Press, 2001.

    Book  Google Scholar 

  3. Roosmalen, A.J., Baggerman, J.A.G., and Brader, S.J.H., Dry Etching for VLSI, New York: Plenum, 1991.

    Book  Google Scholar 

  4. Lieberman, M.A. and Lichtenberg, A.J., Principles of Plasma Discharges and Materials Processing, New York: Wiley, 1994.

    Google Scholar 

  5. Yeom, G.Y. and Kushner, M.J., Si/SiO2 etch properties using CF4 and CHF3 in radio frequency cylindrical magnetron discharges, Appl. Phys. Lett., 1990, vol. 56, pp. 857–859.

    Article  Google Scholar 

  6. Rossnagel, S.M., Cuomo, J.J., and Westwood, W.D., Handbook of Plasma Processing Technology, Park Ridge: Noyes, 1990.

    Google Scholar 

  7. Cartry, F.G., Peignon, M.-C., and Cardinaud, Ch., Selective and deep plasma etching of SiO2: comparison between different fluorocarbon gases (CF4, C2F6, CHF3) mixed with CH4 or H2 and influence of the residence time, J. Vac. Technol. B, 2002, vol. 20, pp. 1514–1521.

    Article  Google Scholar 

  8. Ho, P., Johannes, J.E., and Buss, R.J., Modeling the plasma chemistry of C2F6 and CHF3 etching of silicon dioxide, with comparisons to etch rate and diagnostic data, J. Vac. Sci. Technol., A, 2001, vol. 19, pp. 2344–2367.

    Article  Google Scholar 

  9. Bose, D., Rao, M.V.V.S., Govindan, T.R., and Meyyappan, M., Uncertainty and sensitivity analysis of gas-phase chemistry in a CHF3 plasma, Plasma Sources Sci. Technol., 2003, vol. 12, pp. 225–234.

    Article  Google Scholar 

  10. Proshina, O., Rakhimova, T.V., Zotovich, A., Lopaev, D.V., Zyryanov, S.M., and Rakhimov, A.T., Multifold study of volume plasma chemistry in Ar/CF4 and Ar/CHF3 CCP discharges, Plasma Sources Sci. Technol., 2017, vol. 26, p. 075005.

    Article  Google Scholar 

  11. Efremov, A.M., Murin, D.B., and Kwon, K.-H., Parameters of plasma and kinetics of active particles in CF4 (CHF3) + Ar mixtures of a variable initial composition, Russ. Microelectron., 2018, vol. 47, no. 6, pp. 371–380.

    Article  Google Scholar 

  12. Efremov, A.M., Murin, D.B., and Kwon, K.-H., Features of the kinetics of bulk and heterogeneous processes in CHF3 + Ar and C4F8 + Ar plasma mixtures, Russ. Microelectron., 2019, vol. 48, no. 2, pp. 99–107.

    Article  Google Scholar 

  13. Efremov, A., Lee, J., and Kim, J., On the control of plasma parameters and active species kinetics in CF4 + O2 + Ar gas mixture by CF4/O2 and O2/Ar mixing ratios, Plasma Chem. Plasma Process., 2017, vol. 37, pp. 1445–1462.

    Article  Google Scholar 

  14. Son, J., Efremov, A., Yun, S.J., Yeom, G.Y., and Kwon, K.-H., Etching characteristics and mechanism of SiNx films for nano-devices in CF2F2/O2/Ar inductively coupled plasma: effect of O2 mixing ratio, J. Nanosci. Nanotechnol., 2014, vol. 14, pp. 9534–9540.

    Article  Google Scholar 

  15. Johnson, E.O. and Malter, L., A floating double probe method for measurements in gas discharges, Phys. Rev., 1950, vol. 80, pp. 58–70.

    Article  Google Scholar 

  16. Shun’ko, V., Langmuir Probe in Theory and Practice, Boca Raton, FL: Universal Publ., 2008.

    Google Scholar 

  17. Caneses, J.F. and Blackwell, B., RF compensation of double Langmuir probes: modelling and experiment, Plasma Sources Sci. Technol., 2015, vol. 24, p. 035024.

    Article  Google Scholar 

  18. Kwon, K.-H., Efremov, A., Kim, M., Min, N.K., Jeong, J., and Kim, K., A model-based analysis of plasma parameters and composition in HBr/X (X = Ar, He, N2) inductively coupled plasmas, J. Electrochem. Soc., 2010, vol. 157, pp. H574–H579.

    Article  Google Scholar 

  19. Efremov, A., Min, N.K., Choi, B.G., Baek, K.H., and Kwon, K.-H., Model-based analysis of plasma parameters and active species kinetics in Cl2/X (X = Ar, He, N2) inductively coupled plasmas, J. Electrochem. Soc., 2008, vol. 155, pp. D777–D782.

    Article  Google Scholar 

  20. Hsu, C.C., Nierode, M.A., Coburn, J.W., and Graves, D.B., Comparison of model and experiment for Ar, Ar/O2 and Ar/O2/Cl2 inductively coupled plasmas, J. Phys. D: Appl. Phys., 2006, vol. 39, no. 15, pp. 3272–3284.

    Article  Google Scholar 

  21. Lee, B.J., Efremov, A., Yang, J.W., and Kwon, K.-H., Etching characteristics and mechanisms of MoS2 2D crystals in O2/Ar inductively coupled plasma, J. Nanosci. Nanotechnol., 2016, vol. 16, no. 11, pp. 11201–11209.

    Article  Google Scholar 

  22. Lim, N., Efremov, A., Yeom, G.Y., and Kwon, K.-H., On the etching characteristics and mechanisms of HfO2 thin films in CF4/O2/Ar and CHF3/O2/Ar plasma for nano-devices, J. Nanosci. Nanotechnol., 2014, vol. 14, no. 12, pp. 9670–9679.

    Article  Google Scholar 

  23. NIST Chemical Kinetics Database. https://kinetics. nist.gov/kinetics/welcome.jsp.

  24. Chistophorou, L.G. and Olthoff, J.K., Fundamental Electron Interactions with Plasma Processing Gases, New York: Springer Science, 2004.

    Book  Google Scholar 

  25. Turban, G., Grolleau, B., Launay, P., and Briaud, P., A mass spectrometric diagnostic of C2F6 and CHF3 plasmas during etching of SiO2 and Si, Rev. Phys. Appl., 1985, vol. 20, pp. 609–620.

    Article  Google Scholar 

  26. Takahashi, K., Hori, M., and Goto, T., Characteristics of fluorocarbon radicals and CHF3 molecule in CHF3 electron cyclotron resonance downstream plasma, Jpn. J. Appl. Phys., 1994, vol. 33, pp. 4745–4758.

    Article  Google Scholar 

  27. Standaert, T.E.F.M., Hedlund, C., Joseph, E.A., and Oehrlein, G.S., Role of fluorocarbon film formation in the etching of silicon, silicon dioxide, silicon nitride, and amorphous hydrogenated silicon carbide, J. Vac. Sci. Technol., A, 2004, vol. 22, pp. 53–60.

    Article  Google Scholar 

  28. Stoffels, W.W., Stoffels, E., and Tachibana, K., Polymerization of fluorocarbons in reactive ion etching plasmas, J. Vac. Sci. Technol. A, 1998, vol. 16, pp. 87–95.

    Article  Google Scholar 

  29. Kay, E., Coburn, J., and Dilks, A., Plasma chemistry of fluorocarbons as related to plasma etching and plasma polymerization, in Plasma Chemistry III, Veprek, S. and Venugopalan, M., Eds., Vol. 94 of Topics in Current Chemistry, Berlin, Heidelberg: Springer, 1980.

  30. Jansen, M., Gardeniers, H., De Boer, M., Elwenspoek, M., and Fluitman, J., A survey on the reactive ion etching of silicon in microtechnology, J. Micromech. Microeng., 1996, vol. 6, pp. 14–28.

    Article  Google Scholar 

  31. Gray, D.C., Tepermeister, I., and Sawin, H.H., Phenomenological modeling of ion enhanced surface kinetics in fluorine-based plasma etching, J. Vac. Sci. Technol. B, 1993, vol. 11, pp. 1243–1257.

    Article  Google Scholar 

  32. Lee, C., Graves, D.B., and Lieberman, M.A., Role of etch products in polysilicon etching in a high-density chlorine discharge, Plasma Chem. Plasma Process., 1996, vol. 16, pp. 99–118.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-07-00804А.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Efremov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efremov, A.M., Murin, D.B. & Kwon, KH. Plasma Parameters and Kinetics of Active Particles in the Mixture CHF3 + O2 + Ar. Russ Microelectron 49, 233–243 (2020). https://doi.org/10.1134/S1063739720030038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739720030038

Navigation