Skip to main content
Log in

Boron Adsorption-Desorption by Steelmaking Slag for Boron Removal from Irrigation Waters

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Steelmaking slag, a by-product of the steel-refining process, could be used for removing boron excess from irrigation natural and waste waters, due to its strongly alkaline reaction. The objectives of this study were to: (a) establish the optimum conditions (external solution/adsorbent ratio, equilibration time) of boron adsorption by the slag, (b) assess the slag’s capacity to adsorb boron, and (c) study boron desorption from the slag with time. Boron adsorption increased with the increase of the external solution/adsorbent ratio up to the ratio of 200:1. Although, almost 40% of boron was adsorbed within the first hour of equilibration period, the adsorption gradually increased until the 72 h. The Langmuir adsorption maximum for boron was 145 mg g−1, considerably higher than other adsorbents, like fly ash, calcite, and magnesia. At boron initial concentrations lower than 6 mg L−1, slag removed 55% of boron and reduced it below the permissible levels for irrigation waters (< 4 mg L−1) for most crops. The pH of the equilibrium solution was 10.3 ± 0.8 and dropped to acceptable levels for irrigation waters (< 8.5), after contact with atmosphere for 1 week. Almost 25% of boron was released from samples of boron-laden slag during the first hour of desorption. Consequently, steelmaking slag can be used effectively for removing boron excess from irrigation waters. However, attention should be given to the pH of the slag-treated waters. Furthermore, the disposal of boron-laden slag to soils should be practiced with caution to avoid possible boron phytotoxicity risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abigail, M. E. A., Samuel, M. S., & Chidambaram, R. (2015). Hexavalent chromium biosorption studies using Penicillium griseofulvum MSR1 a novel isolate from tannery effluent site: Box-Behnken optimization, equilibrium, kinetics and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers, 49, 156–164.

  • Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture. FAO Irrigation and Drainage Paper 29, rev. 1. Rome: FAO.

  • Chauhan, R. P. S., & Powar, S. L. (1978). Tolerance of wheat and pea to boron in irrigation water. Plant and Soil, 50(1), 145–149.

    Article  CAS  Google Scholar 

  • Dionisiou, N., Matsi, T., & Misopolinos, N. D. (2006). Use of magnesia for boron removal from irrigation water. Journal of Environmental Quality, 35, 2222–2228.

    Article  CAS  Google Scholar 

  • Duan, J., & Su, B. (2014). Removal characteristics of Cd(II) from acidic aqueous solution by modified steel-making slag. Chemical Engineering Journal, 246, 160–167.

  • Euroslag, & Eurofer (2012). Position paper on the status of ferrous slag. http://projects.gibb.co.za/Portals/3/App%20J13_Position_Paper_April_2012.pdf

  • Ferreira, O. P., de Moraes, S. G., Duran, N., Cornejo, L., & Alves, O. L. (2006). Evaluation of boron removal from water by hydrotalcite-like compounds. Chemosphere, 62, 80–88.

    Article  CAS  Google Scholar 

  • Goldberg, S. (1993). Chemistry and mineralogy of boron in soils. In U. C. Gupta (Ed.), Boron and its role in crop production (pp. 3–44). Boca Raton: CRC Press Inc..

    Google Scholar 

  • Goldberg, S. (1997). Reactions of boron with soils. Plant and Soil, 193, 35–48.

    Article  CAS  Google Scholar 

  • Goldberg, S., & Forster, H. S. (1991). Boron sorption on calcareous soils and reference calcites. Soil Science, 152(4), 304–310.

    Article  CAS  Google Scholar 

  • Goldberg, S., & Glaubig, R. A. (1985). Boron adsorption on aluminium and iron oxides. Soil Science Society of America Journal, 49, 1374–1379.

    Article  CAS  Google Scholar 

  • Guan, Z., Lv, J., Bai, P., & Guo, X. (2016). Boron removal from aqueous solutions by adsorption - a review. Desalination, 383, 29–37.

  • Gupta, U. C. (1993). Deficiency and toxicity symptoms of boron in plants. In U. C. Gupta (Ed.), Boron and its role in crop production (pp. 147–153). Boca Raton: CRC Press Inc..

    Google Scholar 

  • Huifen Y., Wen, M., Weina Z., & Zhiyong, W. (2011). Steel slag as multi-functional material for removal of heavy metal ions in wastewater. In The 2011 International conference on computer distributed control and intelligent environmental monitoring proceedings (pp. 1287-1290). IEEE.

  • IBM Corp. Released (2017). IBM SPSS statistics for windows, version 25.0. Armonk, NY: IBM Corp.

  • Jha, V. K., Kameshima, Y., Nakajima, A., & Okada, K. (2008). Utilization of steel-making slag for the uptake of ammonium and phosphate ions from aqueous solution. Journal of Hazardous Materials, 156, 156–162.

    Article  CAS  Google Scholar 

  • Johnson, G. V., & Fixen, P. E. (1990). Testing soil for sulphur, boron, molybdenum and chlorine. In R. L. Westerman (Ed.), Soil testing and plant analysis, SSSA Book Series 3, (pp. 265–273). Madison, Wl: SSSA.

  • Keren, R. (1996). Boron. In D. L. Sparks (Ed.), Methods of soil analysis - Part 3 - Chemical methods, SSSA Book Series 5, (pp. 603–626). Madison, WI: SSSA and ASA.

  • Kluczka, J., Korolewicz, T., Zalotajkin, M., Simka, W., & Raczek, M. (2013). A new adsorbent for boron removal from aqueous solutions. Environmental Technology, 34(11), 1369–1376.

    Article  CAS  Google Scholar 

  • Lan, Y. Z., Zhang, S., Wang, J. K., & Smith, R. W. (2006). Phosphorus removal using steel slag. Acta Metallurgica Sinica, 19(6), 449–454.

    CAS  Google Scholar 

  • Mercado-Borrayo, B. M., Schouwenaars, R., González-Chávez, J. L., & Ramírez-Zamora, R. M. (2013). Multi-analytical assessment of iron and steel slag characteristics to estimate the removal of metalloids from contaminated water. Journal of Environmental Science and Health, Part A, 48(8), 887–895.

    Article  CAS  Google Scholar 

  • Mercado-Borrayo, B. M., Schouwenaars, R., Litter, M. I., & Ramírez-Zamora, R. M. (2014). Adsorption of boron by metallurgical slag and iron nanoparticles. Adsorption Science and Technology, 32(2), 117–123.

    Article  CAS  Google Scholar 

  • Navarro, C., Diaz, M., & Villa-Garcia, M. A. (2010). Physico-chemical characterization of steel slag. Study of its behavior under stimulated environmental conditions. Environmental Science and Technology, 44(14), 5383–5388.

  • Oh, C., Rhee, S., Oh, M., & Park, J. (2012). Removal characteristics of As(III) and As(V) from acidic aqueous solution by steel making slag. Journal of Hazardous Materials, 213-214, 147–155.

  • Polat, H., Vengosh, A., Pankratov, I., & Polat, M. (2004). A new methodology for removal of boron from water by coal and fly ash. Desalination, 164, 173–188.

    Article  CAS  Google Scholar 

  • Polowczyk, I., Ulatowska, J., Kozlecki, T., Bastrzyk, A., & Sawinski, W. (2013). Studies on removal of boron from aqueous solution by fly ash agglomerates. Desalination, 310, 93–101.

    Article  CAS  Google Scholar 

  • Samara, E., Matsi, T., & Balidakis, A. (2017). Soil application of sewage sludge stabilized with steelmaking slag and its effect on soil properties and wheat growth. Waste Management, 68, 378–387.

    Article  CAS  Google Scholar 

  • Samuel, M. S., Abigail, M. E. A., & Ramalingam, C. (2015a). Isotherm modelling, kinetic study and optimization of batch parameters using response surface methodology for effective removal of Cr (VI) using fungal biomass. PLoS One, 10(3), e0116884.

  • Samuel, M. S., Abigail, M. E. A., & Ramalingam, C. (2015b). Biosorption of Cr (VI) by Ceratocystis paradoxa MSR2 using isotherm modelling, kinetic study and optimization of batch parameters using response surface methodology. PLoS One, 10(3), e0118999.

  • Samuel, M. S., Sheriff Shah, SK, Bhattacharya, J., Subramaniam, K., & Pradeep Singh, N. D. (2018a). Adsorption of Pb(II) from aqueous solution using a magnetic chitosan/graphene oxide composite and its toxicity studies. International Journal of Biological Macromolecules, 115, 1142–1150.

  • Samuel, M. S., Sheriff Shah, S. K., Subramaniyan, V., Qureshi, T., Bhattacharya, J., & Pradeep Singh, N. D. (2018b). Preparation of graphene oxide/chitosan/ferrite nanocomposite for chromium(VI) removal from aqueous solution. International Journal of Biological Macromolecules, 119, 540–547.

    Article  CAS  Google Scholar 

  • Samuel, M. S., Subramaniyan, V., Bhattacharya, J., Parthiban, C., Chand, S., & Pradeep Singh, N. D. (2018c). A GO-CS@MOF [Zn(BDC)(DMF)] material for the adsorption of chromium(VI) ions from aqueous solution. Composites Part B Engineering, 152, 116–125.

    Article  CAS  Google Scholar 

  • Samuel, M. S., Subramaniyan, V., Bhattacharya, J., Chidambaram, R., Qureshi, T., & Pradeep Singh, N. D. (2018d). Ultrasonic-assisted synthesis of graphene oxide – fungal hyphae: an efficient and reclaimable adsorbent for Chromium(VI) removal from aqueous solution. Ultrasonics-Sonochemistry, 48, 412–417.

  • Samuel, M. S., Bhattacharya, J., Raj S., Santhanam, N. Singh, H., & Pradeep Singh, N. D. (2019). Efficient removal of Chromium(VI) from aqueous solution using chitosan grafted graphene oxide (CS-GO) nanocomposite. International Journal of Biological Macromolecules, 121, 285–292.

  • Samuel, M. S., Selvarajan, E., Subramaniam, K., Mathimani, T., Seethappan, S., & Pugazhendhi, A. (2020). Synthesized β-cyclodextrin modified graphene oxide (β-CD-GO) composite for adsorption of cadmium and their toxicity profile in cervical cancer (HeLa) cell lines. Process Biochemistry, 93, 28–35.

    Article  CAS  Google Scholar 

  • Singh, N. B., Nagpal, G., Agrawal, S., & Rachna. (2018). Water purification by using adsorbents: a review. Environmental Technology and Innovation, 11, 187–240.

    Article  Google Scholar 

  • Tsai, H. C., & Lo, S. L. (2015). Boron recovery from high boron containing wastewater using modified sub-micron Ca(OH)2 particle. International journal of Environmental Science and Technology, 12, 161–172.

    Article  CAS  Google Scholar 

  • Waggott, A. (1969). An investigation of the potential problem of increasing boron concentrations in rivers and water courses. Water Research, 3, 749–765.

    Article  CAS  Google Scholar 

  • Yuksel, S., & Yurum, Y. (2009). Removal of boron from aqueous solutions by adsorption using fly ash, zeolite, and demineralized lignite. Separation Science and Technology, 45, 105–115.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodora Matsi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balidakis, A., Matsi, T. Boron Adsorption-Desorption by Steelmaking Slag for Boron Removal from Irrigation Waters. Water Air Soil Pollut 231, 383 (2020). https://doi.org/10.1007/s11270-020-04779-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04779-5

Keywords

Navigation