Skip to main content
Log in

Thiophene HDS on La-Modified CoMo/Al2O3 Sulfided Catalysts. Effect of Rare-Earth Content

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Alumina-lantana (2.5, 5, 7.5 and 10 wt% La) mixed oxides of suitable texture to be applied as supports of catalysts for hydrodesulfurization of FCC naphtha-range oil-derived distillates were prepared by rare-earth pore-filling impregnation through corresponding nitrate. Co, Mo and P were deposited on binary carriers by one-pot simultaneous impregnation method used during commercial hydrotreating catalysts preparation. Materials were characterized by N2 physisorption, XRD, SEM–EDS, adsorbed CO2 FTIR (basicity measurements), Raman and UV–vis spectroscopies. Sulfided catalysts were studied by chemical composition (EDAX) and HR-TEM. In general, amount and strength of surface basic sites increased with rare-earth content in binary carriers at 5 wt% and higher. Deposited molybdates dispersion augmented with lanthanum content in carriers. However, progressively increasing rare-earth loading on supports was detrimental on gas-phase thiophene HDS (523–563 K, steady-state fixed-bed plug-flow reactor operating at atmospheric pressure). Hardly sulfidable tetrahedral Mo species could be originated by decomposition of heteropolymolybdates originally present in one-pot acidic (pH ~ 1.9) Co–Mo–P solutions by impregnating at basic conditions in pores of La-modified carriers. At isoconversion (~ 10%) rare-earth containing sulfided CoMo catalysts had decreased yield to fully saturated n-butane as to the material supported on pristine alumina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mey D, Brunet S, Canaff C, Maugé F, Bouchy C, Diehl F (1998) HDS of a model FCC gasoline over a sulfided CoMo/Al2O3 catalyst: Effect of the addition of potassium. J Catal 227:436–447

    Google Scholar 

  2. Klimova T, Solı́s Casados D, Ramı́rez J (1998) New selective Mo and NiMo HDS catalysts supported on Al2O3-MgO(x) mixed oxides. Catal Today 43:135–146

    CAS  Google Scholar 

  3. Escobar J, Barrera MC, Valente JS, Solís-Casados DA, Santes V, Terrazas JE, Fouconnier BAR (2019) Dibenzothiophene Hydrodesulfurization over P-CoMo on Sol-Gel Alumina Modified by La Addition. Effect of Rare-Earth Content. Catalysts 9 (4) 359:1–20

  4. Blanchard P, Payen E, Grimblot J, Le Bihan L, Poulet O, Loutaty R (1998) Preparation of (Co)-Mo-based hydrodesulphurization catalysts: characterizations of deposited species on lanthanum modified γ-alumina. J Molec Catal A-Chem 135:143–153

    CAS  Google Scholar 

  5. Li M, Song J, Yue F, Pan F, Yan W, Hua Z, Li L, Yang Z, Li L, Wen G, Wu K (2019) Complete hydrodesulfurization of dibenzothiophene via direct desulfurization pathway over mesoporous TiO2-supported NiMo catalyst incorporated with potassium. Catalysts 9(448):1–17

    Google Scholar 

  6. Lu J, Luo Y, He D, Xu Z, He S, Xie D, Mei Y (2020) An exploration into potassium (K) containing MoS2 active phases and its transformation process over MoS2 based materials for producing methanethiol. Catal Today 339:93–104

    CAS  Google Scholar 

  7. Zhang C, Brorson M, Li P, Liu X, Liu T, Jiang Z, Li C (2019) CoMo/Al2O3 catalysts prepared by tailoring the surface properties of alumina for highly selective hydrodesulfurization of FCC gasoline. Appl Catal A-Gen 570:84–95

    CAS  Google Scholar 

  8. Alphonse P, Faure B (2014) Thermal stabilization of alumina modified by lanthanum. Micropor Mesopor Mat 196:191–198

    CAS  Google Scholar 

  9. Lu J, Hao H, Zhang L, Xu Z, Zhong L, Zhao Y, He D, Liu J, Chen D, Pu H, He Y, Luo Y (2018) The investigation of the role of basic lanthanum (La) species on the improvement of catalytic activity and stability of HZSM-5 material for eliminating methanethiol-(CH3SH). Appl Catal B-Environ 237:185–197

    CAS  Google Scholar 

  10. Cut JW, Massoth FE, Topsøe NY (1992) Studies of molybdena-alumina catalysts XVIII. Lanthanum-Modified Supports J Catal 136(2):361–377

    Google Scholar 

  11. Ogawa Y, Toba M, Yoshimura Y (2003) Effect of lanthanum promotion on the structural and catalytic properties of nickel-molybdenum/alumina catalysts. Appl Catal A-Gen 246:213–225

    CAS  Google Scholar 

  12. Lewandowski M, Sarbak Z (1998) The effect of lanthanum and zinc ions on the activity of alumina supported nickel-molybdenum catalysts. Appl Catal A-Gen 173:87–93

    CAS  Google Scholar 

  13. Song S-K, Wang Y, Ihm S-K, Effect of lanthanum addition on the thiophene hydrodesulfurization activity over Al-MCM-41 supported molybdenum catalysts. Catal Today 111:194–198.

  14. Hanafi SA, El-Syed HA, Elmelawy MS, Sultan E-SA (2009) Study of the role of lanthanum containing titania in hydrogenolysis of thiophene and gas oil. Energ Source Part A 31(10):831–842

    CAS  Google Scholar 

  15. France LJ, Du X, Almuqati N, Kuznetsov VL, Zhao Y, Zheng J, Xiao T, Bagabas A, Almegren H, Edwards PP (2014) The effect of lanthanum addition on the catalytic activity of γ-alumina supported bimetallic Co-Mo carbides for dry methane reforming. Appl Petrochem Res 4:145–156

    CAS  Google Scholar 

  16. Yang R, Li X, Wu J, Zhang X, Zhang Z, Wang L (2012) Effects of lanthanum on the structure and the catalytic performance of Ni/Al2O3 catalysts for the hydrotreating of Crude 2-ethylhexanol. Int J Chem React Eng 10(S2):1–14

    CAS  Google Scholar 

  17. Hilsenbeck SJ, McCarley RE, Thompson RK, Flanagan LC, Schrader GL (1997) Metal cluster hydrodesulfurization catalysts based on ternary lanthanum molybdenum sulfides. J Molec Catal A-Chem 122:13–24

    CAS  Google Scholar 

  18. Fujikawa T, Chiyoda O, Tsukagoshi M, Idei K, Takehara S (1998) Development of a high activity HDS catalyst for diesel fuel:from basic research to commercial experience. Catal Today 45(1998):307–312

    CAS  Google Scholar 

  19. Escobar J, Barrera MC, Gutiérrez AW, Cortés-Jacome MA, Angeles-Chávez C, Toledo JA, Solís-Casados DA (2018) Highly active P-doped sulfided NiMo/alumina HDS catalysts from Mo-blue by using saccharose as reducing agents precursor. Appl Catal B-Environ 237:708–720

    CAS  Google Scholar 

  20. Morterra C, Ghiotti G, Boccuzzi F, Coluccia S (1978) An infrared spectroscopic investigation of the surface properties of magnesium aluminate spinel. J Catal 51:299–313

    CAS  Google Scholar 

  21. Philipp R, Fujimoto K (1992) FTIR spectroscopic study of carbon dioxide adsorption/desorption on magnesia/calcium oxide catalysts. J Phys Chem 96:9035–9038

    CAS  Google Scholar 

  22. Kasztelan S, Toulhoat GJ, Bonnelle JP (1984) A geometrical model of the active phase of hydrotreating catalysts. Appl Catal 13:127–159

    CAS  Google Scholar 

  23. Escalante Y, Méndez FJ, Díaz Y, Inojosa M, Morgado M, Delgado M, Bastardo-González E, Brito JL (2019) MCM-41-supported vanadium catalysts structurally modified with Al or Zr for thiophene hydrodesulfurization. Appl Petrochem Res 9:47–55

    CAS  Google Scholar 

  24. Leofanti SG, Padovan M, Tozzola G, Venturelli B (1998) Surface area and pore texture of catalysts. Catal Today 41:207–219

    CAS  Google Scholar 

  25. Gurvich GL (1915) Physico-chemical attractive force. Zh Russ Fiz-Khim Obshchestva 47:805–810

    CAS  Google Scholar 

  26. Ou E, Zhou J, Mao S, Wang J, Xia F, Min L (2007) Highly efficient removal of phosphate by lanthanum-doped mesoporous SiO2. Colloids Surface A 308:47–53

    CAS  Google Scholar 

  27. Zhang L, Wan L, Chang N, Liu J, Duan C, Zhou Q, Li X, Wang X (2011) Removal of phosphate from water by activated carbon fiber loaded with lanthanum oxide. J Hazard Mater 190:848–855

    CAS  PubMed  Google Scholar 

  28. Bergwerff JA, Visser T, Leliveld BRG, Rossenaar BD, de Jong KP, Weckhuysen BM (2004) Envisaging the physicochemical processes during the preparation of supported catalysts: raman microscopy on the impregnation of Mo onto Al2O3 extrudates. J Am Chem Soc 126:14548–14556

    CAS  PubMed  Google Scholar 

  29. Kraus H, Prins R (1995) Composition of impregnation solutions and wet impregnated Mo-P/γ-Al2O3 catalysts as investigated by 31P and 95Mo NMR. J Catal 164:251–259

    Google Scholar 

  30. Sun M, Nicosia D, Prins R (2003) The effects of fluorine, phosphate and chelating agents on hydrotreating catalysts and catalysis. Catal Today 86:173–189

    CAS  Google Scholar 

  31. Segal FM, Correa MF, Bacani R, Castanheira B, Politi MJ, Brochsztain S, Triboni ER (2018) A novel synthesis route of mesoporous γ-alumina from polyoxohydroxide aluminum. Mat Res 21(1):e20170674

    Google Scholar 

  32. Mekhemer GAH (2002) Surface structure and acid–base properties of lanthanum oxide dispersed on silica and alumina catalysts. Phys Chem Chem Phys 4:5400–5405

    CAS  Google Scholar 

  33. Scheithauer M, Knözinger H, Vannice M (1978) Raman spectra of La2O3 dispersed on γ-Al2O3. J Catal 178(2):701–705

    Google Scholar 

  34. Bettman M, Chase RE, Otto K, Weber WH (1991) Dispersion studies on the system La2O3/γ-Al2O3. J Catal 217:447–454

    Google Scholar 

  35. Bálsamo N, Mendieta S, Heredia A, Crivello M (2020) Nanoclays as dispersing precursors of La and Ce oxide catalysts to produce high-valued derivatives of biodiesel by-product. Mol Catal 481:110290–110298

    Google Scholar 

  36. Di Cosimo JI, Diez VK, Xu M, Iglesia E, Apesteguia CR (1998) Structure and surface and catalytic properties of Mg-Al basic oxides. J Catal 78:499–510

    Google Scholar 

  37. Orwat K, Bernard P, Migdał-Mikuli A (2016) Obtaining and investigating amphoteric properties of aluminum oxide in a hands-on laboratory experiment for high school students. J Chem Educ 93(5):906–909

    CAS  Google Scholar 

  38. Vuurmant MA, Wachs I (1992) In situ raman spectroscopy of alumina-supported metal oxide catalysts. J Phys Chem 96:5008–5016

    Google Scholar 

  39. Cheng WC, Luthra NP (1988) NMR study of the adsorption of phosphomolybdates on alumina. J Catal 109:163–169

    CAS  Google Scholar 

  40. Catita L, Quoineaud A-A, Espinat D, Pichon C, Delpoux O (2017) Application of magnetic resonance imaging and raman imaging to study the impact of phosphorus in impregnation of hydrotreatment catalysts. Appl Catal A-Gen 547:164–175

    CAS  Google Scholar 

  41. Hua J, Tian Y, Bian Y, Zhao Q, Zhou Y, Ma X (2020) An efficient way for the synthesis of covalent Strandberg-type phosphomolybdate compound H6P2Mo5O23. SN Appl Sci 2:308

    CAS  Google Scholar 

  42. Nicosia D, Prins R (2005) 31P MAS NMR and raman study of a Co(Zn)MoP/γ-Al2O3 HDS catalyst precursor containing triethylene glycol. J Catal 234:414–420

    CAS  Google Scholar 

  43. Mestl G, Srinivasan TKK (1998) Raman spectroscopy of monolayer-type catalysts: supported molybdenum oxides. Catal Rev Sci Eng 40:451–570

    CAS  Google Scholar 

  44. Jeziorowski H, Knözinger H (1979) Raman and ultraviolet spectroscopic characterization of molybdena on alumina catalysts. J Phys Chem 83:1166–1173

    CAS  Google Scholar 

  45. Torres-Mancera P, Ramírez J, Cuevas R, Gutiérrez-Alejandre A, Murrieta F, Luna R (2005) Hydrodesulfurization of 4,6-DMDBT on NiMo and CoMo catalysts supported on B2O3-Al2O3. Catal Today 107–108:551–558

    Google Scholar 

  46. Solís-Casados DA, Escobar-Alarcón L, Klimova T, Escobar-Aguilar J, Rodríguez-Castellón E, Morales-Ramírez CJA, C, (2016) Catalytic performance of CoMo/Al2O3-MgO-Li(x) formulations in DBT hydrodesulfurization. Catal Today 271:35–44

    Google Scholar 

  47. Sangiorgi N, Aversa L, Tatti R, Verucchi R, Sanson A (2017) Spectrophotometric method for optical band gap and electronic transitions determination of semiconductor materials. Opt Mater 64:18–25

    CAS  Google Scholar 

  48. Weber RS (1995) Effect of local structure on the UV-visible absorption edges of molybdenum oxide clusters and supported molybdenum oxides. J Catal 151:470–474

    CAS  Google Scholar 

  49. Solís-Casados DA, Blancas-Blancas J, Escobar-Alarcón L, Escobar-Aguilar J, Klimova T, Gonzalez-Zavala F (2019) CoMoW/Al2O3-MgO-Li2O catalytic formulations for DBT hydrodesulphurization. J Appl Res Tech 17:203–212

    Google Scholar 

  50. Eijsbouts S (1997) On the flexibility of the active phase in hydrotreating catalysts. Appl Catal A-Gen 158:53–92

    CAS  Google Scholar 

  51. Ishutenko D, Nikulshin P, Pimerzin A (2016) Relation between composition and morphology of K(Co)MoS active phase species and their performances in hydrotreating of model FCC gasoline. Catal Today 271:16–27

    CAS  Google Scholar 

  52. Shimada H (2016) Morphology, dipersion and catalytic functions of molybdenum sulfide catalysts for hydrotreating petroleum fractions. J Jpn Petrol Inst 59(2):46–58

    CAS  Google Scholar 

  53. Ledoux MJ, Huu CP, Segura Y, Luck F (1990) Correlation between low-pressure thiophene HDS and high-pressure dibenzothiophene HDS. J Catal 121:70–76

    CAS  Google Scholar 

  54. Dumeignil F, Sato K, Imamura M, Matsubayashi N, Payen E, Shimada H (2005) Characterization and hydrodesulfurization activity of CoMo catalysts supported on sol–gel prepared Al2O3. Appl Catal A-Gen 287:135–145

    CAS  Google Scholar 

  55. Castillo-Villalón P, Ramírez J, Cuevas R, Vázquez P, Castañeda R (2016) Influence of the support on the catalytic performance of Mo, CoMo, and NiMo catalysts supported on Al2O3 and TiO2 during the HDS of thiophene, dibenzothiophene, or 4,6-dimethyldibenzothiophene. Catal Today 259(1):140–149

    Google Scholar 

  56. Klimova T, Ramírez J, Cuevas R, González H (2000) Effect of the support porosity on the thiophene and dibenzothiophene hydrodesulfurization reactions. Al2O3-TiO2 mixed oxide support. Stud Surf Sci Catal 130:2801–2806

    Google Scholar 

  57. Huang Y, Zhou Z, Qi Y, Li X, Cheng Z, Yuan W (2011) Hierarchically macro-/mesoporous structured Co-Mo-Ni/γ-Al2O3 catalyst for the hydrodesulfurization of thiophene. Chem Eng J 172:444–451

    CAS  Google Scholar 

  58. Liu C, Zhou Z, Huang Y, Cheng Z, Yuan W (2014) Support effects on thiophene hydrodesulfurization over Co-Mo-Ni/Al2O3 and Co-Mo-Ni/TiO2-Al2O3 Catalysts. Chinese J Chem Eng 22(4):383–391

    CAS  Google Scholar 

  59. Satterfield CN (1980) Heterogeneous catalysis in practice. New York, USA

  60. Borgna A, Hensen EJM, Coulier L, de Croon MHJM, Schouten JC, van Veen JAR, Niemantsverdriet JW (2003) Intrinsic thiophene hydrodesulfurization kinetics of a sulfide NiMo/SiO2 model catalyst: volcano-type behavior. Catal Lett 90(3–4):117–122

    CAS  Google Scholar 

  61. Hensen EJM, Vissenberg MJ, de Beer VHJ, van Veen JAR, van Santen RA (1996) Kinetics and mechanism of thiophene hydrodesulfurization over carbon-supported transition metal sulfides. J Catal 163(2):429–435

    CAS  Google Scholar 

  62. Borgna A, Hensen EJM, van Veen JAR, Niemantsverdriet JW (2004) Intrinsic kinetics of thiophene hydrodesulfurization on a sulfided NiMo/SiO2 planar model catalyst. J Catal 221(2):541–548

    CAS  Google Scholar 

  63. Manninger I, Paál Z, Henze KP, de Joung G (1990) Reaction of thiophene on Co-Mo/Al2O3 catalysts of various loading at low hydrogen excess. Can J Chem Eng 68:455–464

    CAS  Google Scholar 

  64. Ge H, Li X-k, Wang J-g, Z-jun Lü, Qin Z-f, Zhou L-g (2009) Study on hydrodesulfurization of thiophene over Mo/Al2O3 catalyst presulfided by thiosulfate ammonium. J Fuel Chem Technol 37(2):199–204

    CAS  Google Scholar 

  65. Garbarino G, Wang C, Valsamakis I, Chitsazan S, Riani P, Finocchio E, Flytzani-Stephanopoulos M, Busca G (2015) A study of Ni/Al2O3 and Ni–La/Al2O3 catalysts for the steam reforming of ethanol and phenol. Appl Catal B-Environ 174–175:21–34

    Google Scholar 

  66. Chen W, Maugé F, van Gestel J, Nie H, Li D, Long X (2013) Effect of modification of the alumina acidity on the properties of supported Mo and CoMo sulfide catalysts. J Catal 304:47–62

    CAS  Google Scholar 

  67. Shi Y, Wang G, Mei J, Xiao C, Hu D, Wang A, Song Y, Ni Y, Jiang G, Duan A (2020) The Influence of pore structure and acidity on the hydrodesulfurization of dibenzothiophene over nimo-supported catalysts. ACS Omega. https://doi.org/10.1021/acsomega.0c01783

    Article  PubMed  PubMed Central  Google Scholar 

  68. Shafiq I, Shafique S, Akhter P, Yang W, Murid H (2020) Recent developments in alumina supported hydrodesulfurization catalysts for the production of sulfur-free refinery products: a technical review. Cat Rev Sci Eng. https://doi.org/10.1080/01614940.2020.1780824

    Article  Google Scholar 

  69. Korányi T, Rozanov V, Kremó R, Paál Z (1990) Activation of carbon-supported cobalt-molybdenum catalysts in thiophene hydrodesulfurization. J Molec Catal 63:31–41

    Google Scholar 

  70. Korányi TI, Manninger PZ (1989) Sulfidation of Co-Mo catyalysts by thiophene: Structure and activity. Solid State Ion 32–33:1012–1018

    Google Scholar 

  71. Nikulshin PA, Ishutenko DI, Mozhaev AA, Maslakov KI, Pimerzin AA (2014) Effects of composition and morphology of active phase of CoMo/Al2O3 catalysts prepared using Co2Mo10-heteropolyacid and chelating agents on their catalytic properties in HDS and HYD reactions. J Catal 312 (152–169)

  72. Bataille F, Lemberton JL, Michaud P, Pérot G, Vrinat M, Lemaire M, Schulz E, Breysse M, Kasztelan S (2000) Alkyldibenzothiophenes hydrodesulfurization-promoter effect, reactivity, and reaction mechanism. J Catal 191:409–422

    CAS  Google Scholar 

  73. Kaluža L, Gulková D, Vít Z, Zdražil M (2007) Effect of support type on the magnitude of synergism and promotion in CoMo sulphide hydrodesulphurisation catalyst. Appl Catal A-Gen 324:30–35

    Google Scholar 

  74. Wu Z, Whiffen VML, Zhu W, Wang D, Smith KJ (2014) Effect of annealing temperature on Co-MoS2 nanosheets for hydrodesulfurization of dibenzothiophene. Catal Lett 44:261–267

    Google Scholar 

  75. Liu B, Liu L, Chai Y, Zhao J, Li Y, Liu Y, Liu C (2018) Highly active CoMoS/Al2O3 catalysts ex-situ presulfided with ammonium sulphide for selective hydrodesulfurization of FCC gasoline. Ind Eng Chem Res 57(6):2041–2049

    CAS  Google Scholar 

  76. Kaluža L, Jirátová K, Tyuliev G, Gulková D, Balábanová J, Radostina P, Koštejn M, Spojakina A (2018) Hydrodesulfurization NiMo catalysts over gamma-alumina prepared mechanochemically. Reac Kinet Mech Cat 125:319–337

    Google Scholar 

  77. Doukeh R, Bombos M, Trifoi A, Mihai O, Popovici D, Bolocan I, Bombos D (2018) Kinetics of thiophene hydrodesulfurization over a supported Mo-Co-Ni catalyst. C R Chem 21(3–4):277–287

    CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge financial support from IMP (Y.00105) and SENER-CONACYT-Hidrocarburos (117086) fund. A. Gutiérrez acknowledges CONACYT for a Doctoral student grant. They also acknowledge to anonymous reviewers which critics and comments significantly contributed in improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Escobar.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Research involving Human Participants and/or Animals

The research involved no human participants and/or animals.

Ethical Approval

The authors state that the manuscript has not been published or submitted to any other journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escobar, J., Ramírez, J., Cuevas, R. et al. Thiophene HDS on La-Modified CoMo/Al2O3 Sulfided Catalysts. Effect of Rare-Earth Content. Top Catal 63, 529–545 (2020). https://doi.org/10.1007/s11244-020-01326-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01326-8

Keywords

Navigation